Подводные лаборатории позволяют решить многие задачи: выявить взаимосвязи биологических процессов и их зависимость от физических и химических параметров среды, создать высокопродуктивные морские фермы по разведению рыб, крабов и моллюсков, плантации пищевых водорослей [1].
Основное преимущество подводной лаборатории заключается в том, чтобы при проведении подводных работ исключить для водолазов необходимую при каждом подъёме на поверхность длительную декомпрессию. Например, десять минут работы на глубине 180 метров требует семи часов декомпрессии. Но в начале 60х годов удалось установить, что для каждой глубины существует предел насыщения азотом тканев организма и сколь бы долго после момента насыщения водолаз не находился под водой на данной глубине, время декомпрессии не увеличится [2].
Первые спуски под воду «методом длительного пребывания» или «методом насыщенных погружений» проводились в различных странах с использованием подводных домов – лабораторий. Дж.Бонд по программе «Генезис», Эдвин А. Линк программа «Человек в море», Жак-Ив Кусто программа «Преконтинент». В частности, в качестве водолазного колокола и жилища-убежища на морском дне на глубине 61 м использовалась погружаемая барокамера-лифт из алюминия – «цилиндр Линка». В рамках программы «Человек в море» Роберт П. Стенюи пробыл 26 часов на глубине 61 м в кислородно-гелиевой среде с содержанием кислорода 6 % и гелия 94 %, осуществляя выходы в водную среду, после чего декомпрессия составила 65,5 часов.
Подводные лаборатории разработаны в двух принципиально отличных конструкций:
Давление в среде обитания равняется подводному давлению на той же глубине. Это делает вход и выход легкими, при этом декомпрессия при входе в лабораторию не требуется.
Внутреннее давление среды меньше чем окружающее давление или ближе к атмосферному давлению. Вход или выход к морю требуют прохождения через шлюзовую камеру и декомпрессию.
Изготовление полностью автономных подводных стационарных комплексов, не зависящих от обеспечения с поверхности, связано со значительными затратами и техническими сложностями, поэтому такие комплексы изготавливали только в единичных случаях.
Более распространенными являются стационарные комплексы, для непрерывного функционирования которых может осуществляться с обеспечивающего судна, специального буя или берега. Однако успешность обеспечения судном зависит от состояния погоды и таким образом делает использование стационарных подводных комплексов опасным в районах с неустойчивой погодой. Замена обеспечивающего судна специальным энергетическим буем решает задачу безопасности только частично, так как в свежую погоду обеспечение полностью зависит от устойчивости работы автоматических систем буя.
Во второй половине 1960-х – начале 1970-х годов в различных странах (Великобритании, США, СССР, Чехословакии, Кубе, Польше, Болгарии, ФРГ, ГДР, Италии и др.) было проведено большое количество экспериментов в подводных лабораториях, обычно на глубине до 10-12 м с использованием для дыхания воздуха.
Характерными примерами являются:
Жак-Ив Кусто в 1962 году создал первый подводный дом «Преконтинент-1» (Precontinent), расположенный на глубине 10 метров. В состав проекта «Преконтинент-2» входило несколько подводных сооружений: основной дом-звезда на глубине 11 метров и расположенный, на глубине 27,5 метров дом «Ракета». «Преконтинент-3», был уже на 100-метровой глубине.
В 1964–1965 годах, под руководством Джорджа Бонда в США также проводили эксперименты по программе «Человек в море». «Силаб-1» (Sealab) был расположен на глубине 58,5 метров и рассчитан на четверых акванавтов. «Силаб-2» был установлен на глубине 61 метр и был рассчитан на 10 человек.
В 1969 году корпорацией «General Electric» по заданию Национального управления по аэронавтике и исследованию космического пространства (НАСА) США и министерства природных ресурсов США была изготовлена подводная лаборатория «Tektite».
Эксперимент «Иджер» (США, 1971 г.) был проведен на рекордной глубине 177 м. Используемый при эксперименте комплекс был сделан автономным и достаточно мореходным для того, чтобы его буксировать при волнении моря до 6 баллов [3].
Подводный комплекс «Гельголанд» (ФРГ, 1969) был рассчитан для работ на глубинах до 30 м. Поскольку он предназначен для работ в открытых частях Северного моря, при его создании была принята система обеспечения не с судов, а со специального энергобуя. Жилой отсек занимает менее трети длины корпуса, прочность его такова, что он способен выдерживать наружное давление 0,98 МПа. Эта особенность конструкции отсека позволяет водолазам проходить декомпрессию на дне, а по ее завершении всплывать на поверхность в водолазном снаряжении.
Подводный комплекс «La Chalupa Research Lab» также был построен вместе с энергетическим буем. Рассчитан он на обеспечение работы 4 водолазов на глубинах до 33 м. Обеспечение комплекса электроэнергией, пресной водой и сжатым воздухом осуществляется с надводного буя, который представляет собой корпус катера из стеклопластика длиной 11 м. В отсеках этого корпуса размещены дизель-генераторы (основной и резервный), дизель-компрессора, радиостанция, соединенная кабелем с переговорным устройством подводного комплекса и др.
MarineLab был разработан и построен как часть океанской программы в Военно-морской академии США под руководством доктора Нила Т. Монни. В 1983 была пожертвована Морскому Фонду развития Ресурсов (MRDF), и в 1984 была развернута на ложе океана в Национальном парке Джона Пеннекампа Корэл Риф, Ки-Ларго, Флорида. MarineLab также используется в качестве подводного отеля для туристов, если не в использовании для научных экспериментов.
В СССР также проводились подобные эксперименты [4 – 7]:
В 1966 Анатолий Майер, Всеволод Джус, Анатолий Игнатьев, Вениамин Мерлин и Владимир Бурнашев, при поддержке Ленинградского гидрометеорологического института и филиала Акустического института АН СССР в Сухуми, создали свой подводный дом «Садко»
Лабораторию «Ихтиандр» создали группа энтузиастов во главе с Александром Хаесом и Юрием Барацем при поддержке специалистов Института физиологии им. И.П. Павлова и Института эволюционной физиологии и биохимии им И.М. Сеченова.
Группа ученых во главе с Вячеславом Ястребовым и Павлом Боровиковым подготовила техническое задание на подводный дом-лабораторию «Черномор» для Института океанологии АН СССР. В 1968 году начались испытания и работа лаборатории в море.
Отдельно можно отметить подводный надувной дом-гидростат «Спрут». Оболочка гидростата состояла из трех слоев брезента и слоя прорезиненной алюминиевой ткани. При поддуве верхняя часть принимала сферическую форму, средняя – цилиндрическую, оканчивавшуюся плоским полом. Гидростат заключался в подкрепляющую сеть из пеньковой веревки, в оболочки были врезаны два иллюминатора [8].
«Спрут» в ряде случаев оказался экономически более выгодным, а зачастую единственно возможным вариантом подводной лаборатории, он оказался удобен для транспортировки и пригоден для многократной установки, в том числе и автоматической. Был подготовлен один из «Спрутов» для работы на дрейфующей станции «Северный полюс-23». Для проверки возможности эксплуатации «Спрута» в тропических зонах океана он был установлен на глубине 12 м в Индийском океане. Монтаж дома двумя водолазами с водолазного бота был выполнен за один час работы под водой.
Спрут-У участвовал в экспериментах с подводным домом «Черномор», в котором «Спруту» отводилась роль базы-убежища. Спрут-У имел две оболочки, между которыми подавался воздух, регенерационную установку, иллюминаторы-блистеры, обеспечивавшие обзор на 180°. От «улавливающей» сетки отказались, были применены стропы.
Также были разработаны и другие «мягкие» аппараты разнообразной конструкции: сферические аппараты, каркасно-вантовые с компенсатором плавучести, и цельномягкие шитые, например, секторный вертикальный трехотсечный гидропневматическим гидростат, который был окружен мягкими тороидами, наполняемые водой, причем внешние тороидальные баллоны могли быть использованы для хранения пресной воды.
Технические параметры подводных лабораторий
| Наименование | Глубина установки, м | Объем, м3 | Дыхательная смесь | Форма корпуса, расположение отсеков | 
| Силаб 1 | 58,5 | 70 | 80 % гелий, 13 % азот, 4 % кислород | Горизонтальный цилиндр, с проходными отсеками | 
| Преконтинент 2 (звезда) | 11 | 80 | Воздух | Четырех лучевая звезда, 3 отсека не проходных | 
| Преконтинент 2 (ракета) | 27 | 13 | 50 % гелий, 40 % азот, 10 % кислород | Вертикальный цилиндр, двухэтажное | 
| Преконтинент 3 | 100 | 100 | 97,5 % гелий, 25 % кислород | Сфера, двухэтажное | 
| Черномор | Более 20 | Более 55 | Азотно-кислородные смеси | Горизонтальный цилиндр, 3 отсека | 
| Ихтиандр 67 | 12 | 28 | Воздух | 3 секции | 
| Садко 3 | 39 | н/д | Воздух | Вертикальный цилиндр, 3 отсека | 
| Спрут-У | Более 20 | 6 | Воздух, азотно-кислородные смеси | Вертикальный цилиндр | 
Мощность обогревательной установки, Силаб 1 – 10кВт, Силаб 2 – 25 кВт., Преконтинент 3 – 11 кВт.
Подводные дома не смогли найти широкого применения при выполнении практических подводных работ в силу ряда серьезных недостатков. Стационарное размещение подводного дома на грунте не позволяет в случае необходимости быстро перенести дом с одного места на другое без участия специальных плавсредств (мощных плавкранов, буксиров и др.). Возникают проблемы оказания помощи акванавтам при заболеваниях и несчастных случаях, проблемы удаления мусора и продуктов жизнедеятельности.
Большое внимание уделяется теплообмену между домом и водой, из-за высокого давления и физических свойств искусственной атмосферы теплоизоляция быстро насыщается гелием и теряет свои свойства. С целью улучшения теплоизоляции применяют двойные стенки, между которыми циркулирует горячая вода. Опыты показали, что живущий в атмосфере с гелием человек сильно мерзнет. Гелий имеет гораздо большую теплопроводность, чем азот, и, чтобы человек не ощущал холод, температура в доме должна быть от 28 до 38° С. Работая в холодной воде водолаз замерзает и по возвращении требуются энергичные меры для его согревания. С этой целью широко используются пресные горячие души и инфракрасные печи. Кроме того необходим подогрев гелиевых дыхательных смесей для работающих снаружи водолазов.
Но самое главное – это точное регулирование состава атмосферы дома и надежная работа систем удаления примесей. При выходе их из строя акванавты могут погибнуть и от кислородного отравления, и от кислородного голодания, и от отравления вредными примесями. Сложность поддержания заданного состава смеси заключается в том, что расход кислорода в доме изменяется довольно значительно в зависимости от того, сколько человек в данный момент находится в доме, работают они или отдыхают и т. д. Система должна измерять количество кислорода в смеси и пополнять его по мере необходимости.
Параллельно со стационарными подводными лабораториями разрабатывались мобильные варианты, например: научно-исследовательская подводная лодка «Северянка» и подводная база-лаборатория пр.1840, спасательная подводная лодка пр. 940; комплекс «Архипелаг» и «Селигер», состоящий из погружаемой капсулы и ПЛ-носителя; лаборатория «Бентос-300» и др.
В настоящее время наиболее известна лаборатория «AQUARIUS», которая используется для подготовки астронавтов NASA США [9 – 10]. Она находится состоит из трех частей: поддерживающий буй – Life Support Buoy (LSB), балластная плита, и непосредственно лаборатория. Сама лаборатория это стальной цилиндр диаметром 2,7 м, почти 13 м в длину, внутри жилые помещения и лаборатории, для работы шестерых обитателей. Недалеко от лаборатории две вспомогательные станции – Pinnacle и Gazebo, которые содержат карманы воздуха. Обычно давление внутри «AQUARIUS» поддерживается на уровне в 2,5 атм – это эквивалентно погружению на глубину 15 метров. Декомпрессия проводится прямо в лаборатории, всплытие имитируется изменением давления, которое постепенно понижается, в течение приблизительно 17 часов до тех пор, пока не будет достигнуто давление в одну атмосферу.
Назначение лаборатории – проведение экспедиций в условиях экстремальной окружающей среды, имитирующую работу с использованием системы подвесок (симулирование лунной и марсианской гравитации). Чтобы исследовать границы расположения центра тяжести для будущих конструкций, специалисты из проекта NASA по исследованию физиологии, систем и механизмов выхода в открытый космос (EVA Physiology, Systems and Performance Project), работающие вместе с экипажем и инженерами по тепловым системам, разработали трансформируемую заспинную подвеску со сменным центром тяжести.
В России в Ленинградской области построен подводный дом для дайверов. Он позволяет отрабатывать такие навыки, как вход и выход в подводные сооружения, тренировка для работ на промышленных подводных объектах, тренировка по остропке для подъема затонувших судов, осмотр опор мостов, трубопроводов и другие.
Архангельские конструкторы разрабатывают первый в стране подводный отель для дайверов. Снабжение погружаемой барокамеры сжатым воздухом, электроэнергией, пресной водой, продуктами питания, питьевой водой, баллонами со сжатым воздухом будет осуществляться с берега или с баржи. Предполагаемое место установки– вблизи коралловых рифов, недалеко от курортных городов. Бизнес-проект предусматривает как сдачу в аренду подводного дома для научных исследований, так и организацию экскурсий с подводными фото- и видеосъемками в течение одного или двух дней.
Заключение
Сложность эксплуатации и большие материальные затраты явились причиной сокращения строительства подводных стационарных комплексов. Их используют перспективно для тех работ и исследований, которые ведутся на ограниченных участках.
В настоящее время стационарные подводные дома находят применение лишь на малых глубинах с использованием в качестве газовой среды воздуха при выполнении локальных океанологических исследований, изучении биоресурсов в прибрежной зоне, для подготовки и тренировки космонавтов, а также в коммерческих целях для туристического бизнеса.
Однако продолжают разрабатываться проекты станций военного и коммерческого применения, например: подводные ракетные шахты и базы-башни из гидропневматических тороидов для сбора конкреций, добычи газа, нефти.
Библиографическая ссылка
Чернышов Е.А., Романов А.Д., Романова Е.А. РАЗВИТИЕ ПОДВОДНЫХ ЛАБОРАТОРИЙ // Международный журнал прикладных и фундаментальных исследований. 2014. № 5-2. С. 41-44;URL: https://applied-research.ru/ru/article/view?id=5333 (дата обращения: 31.10.2025).

