Научный журнал
Международный журнал прикладных и фундаментальных исследований
ISSN 1996-3955
ИФ РИНЦ = 0,593

ИЗНОСОСТОЙКИЙ РЕЖУЩИЙ ИНСТРУМЕНТ ИЗ БЫСТРОРЕЖУЩИХ СТАЛЕЙ

Космынин А.В. 1 Чернобай С.П. 1 Саблина Н.С. 1
1 ФГБОУ ВПО «Комсомольский-на-Амуре государственный технический университет»
1. Космынин А.В., Чернобай С.П. Влияние изотермической закалки на свойства режущего инструмента // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 5. – С. 74–75.
2. Космынин А.В., Чернобай С.П. Кинетика процесса разрушения образцов из быстрорежущих сталей по параметрам акустической эмиссии // Международный журнал экспериментального образования. – 2012. – № 4. – С. 26–28.
3. Космынин А.В., Чернобай С.П. Исследования влияния охлаждающих сред на свойства режущего инструмента // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 4. – С. 54–55.
4. Космынин А.В., Чернобай С.П. Перспективные технологии изготовления режущего инструмента // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 4. – С. 95.
5. Чернобай С.П., Саблина Н.С. Режущий инструмент для высокоскоростной обработки деталей летательных аппаратов // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 2. – С. 54.
6. Космынин А.В., Чернобай С.П., Виноградов С.В. Повышение теплостойкости и износостойкости режущего инструмента для высокоскоростной обработки деталей // Успехи современного естествознания. – 2007. – № 12. – С. 129–130.
7. Чернобай С.П. Перспективные технологии производства летательных аппаратов // Авиационная промышленность. – 2006. – № 1. – С. 23–25.
8. Космынин А.В., Чернобай С.П. Аналитическая оценка методов нагрева под закалку режущего инструмента // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 5. – С. 74.
9. Космынин А.В., Чернобай С.П. Оптимизация процессов высокоскоростной обработки // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 4. – С. 94–95.
10. Космынин А.В., Чернобай С.П. Изотермическая закалка инструмента из быстрорежущих сталей // Современные наукоемкие технологии. – 2012. – № 9. – С. 46.
11. Космынин А.В., Чернобай С.П. Перспективы усовершенствования конструкций металлорежущих станков для обработки деталей авиационной техники // Современные наукоемкие технологии. – 2012. – № 9. – С. 66.
12. Космынин А.В., Чернобай С.П. Применение инструмента из сверхтвердых материалов для обработки авиационных деталей // Современные наукоемкие технологии. – 2012. – № 9. – С. 67.
13. Космынин А.В., Саблина Н.С., Чернобай С.П., Космынин А.А. Исследование влияния режимов термической обработки на свойства быстрорежущих сталей методом акустической эмиссии // Современные наукоёмкие технологии. – 2012. – № 10. – С. 66–67.
14. Космынин А.В., Саблина Н.С., Чернобай С.П., Космынин А.А. Исследование эксплуатационных свойств инструмента из быстрорежущих сталей // Современные наукоёмкие технологии. – 2012. – № 10. – С. 67–69.
15. Космынин А.В., Саблина Н.С., Чернобай С.П., Космынин А.А. Актуальность разработки высокоскоростных шпиндельных узлов металлорежущего оборудования для повышения качества продукции // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 10. – С. 113.
16. Космынин А.В., Саблина Н.С., Чернобай С.П., Космынин А.А. Перспективы высокоскоростной обработки деталей из авиационных материалов // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 10. – С. 113–114.
17. Космынин А.В., Саблина Н.С., Чернобай С.П., Космынин А.А. Выбор и обоснование исследований новых и усовершенствование существующих технологических процессов изготовления инструмента для высокоэффективной обработки резанием авиационных материалов летательных аппаратов // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 10. – С. 114–115.
18. Космынин А.В., Чернобай С.П. Совершенствование конструкций металлообрабатывающих станков при производстве деталей летательных аппаратов // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 4. – С. 104.
19. Космынин А.В., Чернобай С.П. Ресурсосберегающий подход повышения качества продукции // Международный журнал прикладных и фундаментальных исследований. – 2012. – № 4. – С. 53–54.
20. Космынин А.В., Чернобай С.П. Повышение точности работы металлообрабатывающих станков при производстве летательных аппаратов // Международный журнал прикладных и фундаментальных исследований. – 2011. – № 12. – С. 126–127.
21. Космынин А.В., Чернобай С.П. Анализ точности вращения высокоскоростных шпинделей с газостатическими опорами // СТИН. – 2006. – № 6. – С. 10–13.
22. Космынин А.В., Чернобай С.П., Анохин Ф.Ф. Усовершенствование технологического оборудования при изготовлении авиационной и корабельной техники // Международный журнал экспериментального образования. – 2014. – № 5–2. – С. 20–21.
23. Космынин А.В. Чернобай С.П., Саблина Н.С. Информационная среда технологической подготовки производства летательных аппаратов // Международный журнал экспериментального образования. – 2013. – № 7. – С. 179.
24. Космынин А.В. Чернобай С.П., Саблина Н.С. Акустическая эмиссия инструмента из быстрорежущих сталей // Международный журнал экспериментального образования. – 2014. – № 5–2. – С. 26–27.

Не секрет, что более 65 % мирового производства режущего инструмента (РИ) изготавливается из быстрорежущих сталей, не смотря на развитие новых твердосплавных инструментальных материалов. Поэтому исследование и разработка технологических процессов повышения износостойкости РИ одна из наиболее важных задач современного машиностроения. Она заключается в поиске таких структурных состояний, которые обеспечивают высокий уровень износостойкости, теплостойкости, ударной вязкости, статической усталостной трещиностойкости инструмента [1–8].

Высокотемпературный нагрев для аустенизации и растворения карбидов, последующие закалка и старение быстрорежущих сталей служат для создания и управления соответствующей структурной неординарностью и в конечном итоге износостойкостью и теплостойкостью РИ. Практика эксплуатации РИ из быстрорежущих сталей показывает, что в большинстве случаев причиной неудовлетворительной стойкости инструмента является хрупкое разрушение его или смятие режущей кромки из–за низких пластических характеристик – в первом случае, деградации структуры поверхностного слоя – во втором случае. Восстановление такого РИ как до, так и после эксплуатации практически невозможно. Кроме того, отсутствуют достаточно надёжные методы оценки качества РИ [9–14].

Заслуживают внимания различные способы изотермической закалки, позволяющие резко повысить пластические характеристики РИ, но при этом несколько снижаются их прочностные свойства. Кроме того, для обеспечения неизменности химического состава в поверхностном слое сталей и сплавов при нагреве под закалку используются установки и печи с псевдоожиженным слоем сыпучих материалов. Исследования по использованию таких установок для нагрева под закалку РИ практически отсутствуют [15–18].

Новыми перспективными направлениями повышения пластичности материалов и сплавов при сохранении прочности являются: деформация в области субкритической сверхпластичности, а также обработка электроимпульсным воздействием. В ФГБОУ ВПО «КнАГТУ» в области оценки физико-механических свойств материалов и сплавов наиболее интенсивно развивается в последнее время метод акустической эмиссии для исследования влияния структурных изменений на их свойства, что существенно решает проблему эксплуатационной надежности РИ (19-24).


Библиографическая ссылка

Космынин А.В., Чернобай С.П., Саблина Н.С. ИЗНОСОСТОЙКИЙ РЕЖУЩИЙ ИНСТРУМЕНТ ИЗ БЫСТРОРЕЖУЩИХ СТАЛЕЙ // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 10-1. – С. 99-100;
URL: https://applied-research.ru/ru/article/view?id=5942 (дата обращения: 20.04.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674