Возникновение аутотрофных организмов в ходе эволюции жизни на Земле и, следовательно, такого «удобного» окислителя как кислород дало организмам-потребителям прекрасную возможность более эффективного извлечения энергии органических веществ, что привело к возникновению аэробных организмов. Преимуществом аэробного окисления является больший количественный энергетический выход на единицу массы органического субстрата. Появление многоклеточных организмов привело к возникновению проблемы доставки молекулярного кислорода во все структуры и клетки живых систем. Важнейшее приспособление для снабжения клеток кислородом, позволившее преодолеть ограничения, обусловленные низкой растворимостью кислорода в воде, – это появление в процессе эволюции специальных молекул – переносчиков кислорода. У позвоночных роль ключевого из таких транспортеров выполняет гемоглобин.Присутствие гемоглобина в 50 раз увеличивает способность крови переносить кислород. Кроме того, он играет жизненно важную роль в транспорте углекислого газа и ионов водорода [13, 21, 27].
Гемоглобин (от греч. haemo – кровь и лат. globus – шар), красный железосодержащий ферропротеин, являющийся дыхательным пигментом крови человека, позвоночных и некоторых беспозвоночных животных. Относится к сложным белкам – хромопротеидам [21].
Invivoгемоглобин выполняет следующие биологические функции:
1. Транспортно-дыхательная:
• перенос молекулярного кислорода от альвеолярной ткани дыхательных органов к периферическим тканям;
• транспорт углекислого газа и катионов водорода от периферических тканей к легким для последующего выведения из организма.
2. Буферная функция – заключается в сохранении кислотно-основного баланса крови. Буферная система, создаваемая гемоглобином, способствует поддержанию рН крови в нормалном диапазоне.Гемоглобиновый буфер является самым мощным буфером крови (около 75 % от общей буферной емкости крови) [13, 21].
Молекула гемоглобина представлена белковой частью – глобином и небелковой – гемом.
Гем – тетрапиррольная ароматическая структура протопорфиринаIX, в состав которого обязательно входит ион Fe2+.Гем является простетической группойферропротеинов (гемоглобина, миоглобина,цитохромов, пероксидазы, каталазы и др.). Именно гем обеспечивает этим белкам их главные функции: связывание (миоглобин и гемоглобин) и транспорт кислорода (гемоглобин), участие в цепи переноса электронов (цитохромы), восстановление кислорода до воды (цитохромоксидаза), микросомальное окисление (цитохром P450), разложение перекисей (каталаза и пероксидаза) [18, 21].
Гемоглобины представляют собой мультимерные белки. Основные типы гемоглобина имеют значительное структурное сходство: все они – тетрамеры, состоящие из двух парпротомеров: пары идентичных субъединиц, представленных α-цепями, и характерной для каждого типа другой парой. Комплекс, составленный из одного гема и одной полипептидной глобиновой цепи, называется Сведберговой единицей. Следовательно, молекула гемоглобина состоит из четырех Сведберговых единиц [5, 18, 21].
В настоящее время известно более 300 генетически обусловленных типов гемоглобина. Их современная номенклатура принята на Х Международном гематологическом конгрессе в Стокгольме в 1964 году. Типы гемоглобина обозначают буквами латинского алфавита от А до G и S [6].
К наиболее значимым и изученным изотипам гемоглобина человека относятся:
Гемоглобин взрослого – HbA (от латинского adults – взрослый), включающий более сотни подтипов, основные из которых HbА1, HbА2.
Фетальный (или плодовый) гемоглобин – HbF (от латинского, fetus – плод).
Эмбриональный (или примитивный)– HbP (от греческого embryon – зародыш).
У человека и высших животных гемоглобин всех типов является тетрамером, молекула которого построена из 4 субъединиц-протомеров [6, 11].
Фетальный и эмбриональный гемоглобины являются типичными стадиоспецифическими белками, некоторые авторы объединяют их термином антенатальные гемоглобины [7, 17].
Примитивный гемоглобин P имеет синоним эмбриональный – HbE. Название HbP было предложено Allison в 1955 году. Этот тип гемоглобина обладает более высоким, чем HbA1, сродством к кислороду. Он также является тетрамером. Его синтез активируется в раннем эмбриогенезе и протекает в эмбриональном желточном мешке.HbP находится в эритроцитах эмбриона человека с 4-й по 18-ю неделю гестации, в основном между 5-й и 12-й неделями [6, 21].
HbPимеет несколько подтипов, главными из которых являются:Gower-I, Gower-II,Hb-Portland и другими.Все они являются тетрамерами, различающимися структурой только одной из двух пар полипептидных цепей: GowerI – ε4; ГоверII – α2ε2, Hb-Portlandz 2g2 [5, 11, 13, 20].
По физико-химическим свойствам эмбриональный гемоглобин сходен с фетальным гемоглобином, имеет близкие параметры по спектру поглощения, коэффициенту седиментации – 4,5 S, характеризуется высокой щелочной резистентностью, но имеет меньшую электрофоретическую подвижность [6, 18, 21].
Фетальный гемоглобин – тетраметр, состоящий из двух α- и двух γ-протомеров. В ?-цепи, в отличие от β-цепи, содержится меньше валина, пролина, гистидина, но больше – изолейцина, серина, треонина. Кроме того, в состав β-цепи входит изолейцин, который отсутствует в гемоглобинах А и А2. Общее количество аминокислотных остатков в γ-цепи, как и в β- и δ-цепях, равно 146 [5, 18, 20].
Стадиоспецифическая смена различных типов гемоглобина в процессе онтогенеза обусловлена тем, что каждый изотипэтого белка обладает функциональными и физико-химическими особенностями, обеспечивающими адаптивную специфику молекул гемоглобина в разных микроусловиях организма. В результате этого транспорт дыхательных газов выполняет целое семейство системы гемоглобинов, количественное соотношение которых в норме адекватно возрастным особенностям организма. В первые недели эмбрионального развитияактивируется синтез гемоглобинов типа HbP. К концу 12-й недели продукция ε-цепи эмбрионального гемоглобина полностью репрессируется и с 12-й по 24-ю неделю практически весь гемоглобин плода представлен α- и γ-протомерами, т.е. фетальным гемоглобином. Стоит заметить, что HbF обнаруживается у эмбрионов на ранних сроках гестации, но его уровень в этот период значительно ниже, чем HbP [4, 10, 12].
Фетальный гемоглобин начинает активно синтезироваться с 12-й недели гестации, т.е. через 2 недели после формирования печени плода, и к 6 месяцам эмбрионального развития полностью замещает HbP, становясь основным гемоглобином плода. Он составляет 90–95 % общего количества Нb у плода вплоть до 34–36–недель гестации. После 6 месяца гестации постепенно появляется также обыкновенный гемоглобин человека (HbA1). Количество фетального гемоглобинаэкспоненциально снижается параллельно увеличению количества HbA1 и к моменту рождения составляет, по разным литературным источникам, 50–80 % от общего гемоглобина крови. Такое замещение происходит вследствие постепенного снижения синтеза β-цепей глобина и постепенного увеличения продукции β-цепей в ходе эритропоэза в красном костном мозге. В крови взрослого человека на долю HbF приходится не более 1,5 % от общего гемоглобина [8, 10, 12].
После рождения уровеньHbF в крови уменьшается примерно на 3 % в неделю и к шестому месяцу жизни составляет обычно менее 2–3 % общего количества гемоглобина, замещаясь на гемоглобин взрослого (HbA1). Следует отметить, что синтез HbP в постнатальном периоде у здорового человека ингибирована полностью [10, 12].
Изоэлектрическая точка фетального гемоглобина, по данным разныхавторов – 6,9–7,15 [13, 21].
HbF, как и HbP, устойчив к денатурирующему воздействию щелочей, что используется при его клиническом определении [5, 6, 21].
Благодаря большему сродству антенатальных гемоглобинов к кислороду, эритроциты эмбриона и плода могут поглощать и отдавать кислород при более низком парциальном давлении, чем эритроциты взрослого. Осмолярность кислорода в крови плода примерно в 2 раза ниже, чем у взрослого человека, тем, не менее, высокая тропностьHbF к кислороду позволяет обеспечить адекватнуюоксигенациютканей плода в условиях физиологтческой гипоксии. Кроме того, эритроциты, содержащие HbF, обладают повышенной устойчивостью к гемолизу [2, 23, 30].
Количественный анализ антенатальных гемоглобинов в крови имеет большое значение в клинической практике.
Многочисленные исследования свидетельствуют, что уровеньфетального гемоглобина значительно повышается в крови взрослых пациентовс гомозиготной формой β-талассемии, σ-, β-талассемии. У больныхсерповидноклеточной анемией уровень HbFпревышает норму на 30 %, а при наследственном персистированиифетального гемоглобинагемоглобин взрослого практически полностью представлен HbF. Значительное повышение уровня HbF выявлено также у недоношенных детей. Повышение концентрации этого белкарегистрируетсяу взрослых людей при гематологических заболеваниях, острых и хронических интоксикациях, эндокринных нарушениях, сердечно-сосудистой патологии, пароксизмальной ночной гемоглобинурии, наследственных сфероцитозах, аутоиммунных анемиях, несфероцитарных гемолитических и гипопластических анемиях [3, 9, 28].
Рост концентрации HbF в крови беременных женщин является тревожным признаком, указывающим на развитие осложнений – гестозов, угрозу прерывания беременности, преждевременную отслойку плаценты [1, 22].
В литературных источниках последних лет отмечено увеличение уровня фетального гемоглобина при хронических гипоксиях различной этиологии. Повышение уровня HbF в эритроцитах происходит за счет развития адаптивных реакций красной крови в условиях гипоксии и связана с частичной активацией гена g-цепи глобина на фоне напряженного эритропоэза. Установлено повышение концентрации HbF в крови при хронических гипоксиях (в частности, у больных ХИБС и ХОБЛ). Причем, увеличение концентрации этого протеина в кровотоке имеет прямую зависимость от степени декомпенсации кровообращения, возраста пациентов, наличия сочетанной патологии и длительности заболевания [14, 16, 26].
У людей, проживающих в экзогенных условиях хронической гипоксии, а именно: в условиях высокогорья, на Крайнем Севере, в Забайкалье, регистрируется компенсаторно-адаптивное повышение концентрации HbF. Причем, интенсивность его накопления в крови значительно превышает степень образования других изотипов гемоглобина [25, 26].
Литературные данные последних лет показали, что достоверное повышение уровня HbF в крови отмечается при ряде онкогематологической патологии, а именно: при миелопролиферативных заболеваниях (эритремия, сублейкемический миелоз, острый и хронический лимфолейкоз), что свидетельствует о высокой клинико-диагностической роли этого типа гемоглобина как канцероэмбрионального антигена [15, 19].
Достоверное снижение концентрации HbF наблюдается в крови больных с железодефицитной, В12 (фолиево)-дефицитной, гемолитической и постгеморрагической анемиями,при эритробластозах, развивающихся при несовместимости между матерью и плодом. Отмечается снижение содержания фетального гемоглобина у доношенных и недоношенных детей с гемолитической болезнью и у детей с задержкой внутриутробного развития [24, 29].
В крови взрослых пациентов снижение уровня HbF наблюдается при гематологической патологии: тромбоцитопенической пурпуре, лейкозе, сфероцитарной гемолитической анемии, лимфогранулематозе [3, 18].
Сведения о клинико-диагностическом значении эмбрионального гемоглобина в научной литературе крайне скудны. Это объясняется тем фактом, что, по мнению большинства клиницистов, данный белок не представляет прикладной (диагностическо-прогностической) ценности, т.к. активность его гена полностью репрессирована как у детей, так и у взрослых. Кроме того, широкому изучению HbP препятствует методологический фактор: получение препарата этого белка крайне затруднительно из-за сложностей получения биоматериала (HbP синтезируется только в раннем эмбриогенезе, с 5 по 18 гестации), экстрагирования и очистки белка [18, 21].
Тем не менее, в последние годы появились работы, свидетельствующие о несомненной роли этого протеина, как канцероэмбрионального антигена. Показано, что продукция эмбрионального гемоглобина активируется при ряде онкологических заболеваний красной крови, в первую очередь – при хронических миелопролиферативных заболеваниях (ХМПЗ): эритремии, сублейкемическом миелозе, а также острых и хроническихмиелолейкозах [15, 19].