Scientific journal
International Journal of Applied and fundamental research
ISSN 1996-3955
ИФ РИНЦ = 0,593

ANALYSIS OF THE USE OF SOFT STARTERS AND BRAKING OF ELECTRICAL MOTORS

Kopeikina T.V. 1
1 Kamyshin technological institute (branch) of Federal State Budgetary Educational Establishment of Higher Education “Volgograd State Technical University”)
This article analyses the correct use of the device of smooth start and braking of electrical motors. Marked beneficial effect of application of the UPP, way of achieving the desired reduction in starting currents and related quantities of voltage dips in the supply network and reduction of impact on the mechanical parts of the actuator. The purpose of the study, where the focus is on tasks that make soft starters (SCP). Conducted analysis of methods of regulating UPP, indicating the advantages and disadvantages of each method, as well as marking the application. Special attention is paid to the typical operation of UPP and ways of solving them. Reviewed commissioning the parameterisation of the soft starter. In conclusion the conducted research indicates the need for and feasibility of tiristornykh SCP if you use the asynchronous motor with squirrel-cage rotor, not giving the possibility to switch the windings from star to Delta on the go, because this device is the most popular device for solving many problems arising in direct start-up.
Key words: the motor start device
thyristor
regulation
voltage
current
regulation
handling
braking

Устройства плавного пуска синхронных и асинхронных электродвигателей (ЭД) в последнее десятилетие начали широко применяться для обеспечения плавных и контролируемых пусков и торможений ЭД.

При этом результаты исследований, показывают, что имеются случаи, когда применение этих устройств сопровождается появлением побочных негативных эффектов.

Устройства плавного пуска (УПП) содержат включенные в каждой фазе попарно встречно-параллельно тиристорные ключи, позволяющие за счет фазового регулирования влиять на действующее значение первой гармоники напряжения на выводах ЭД. Выбором соответствующей программы изменения напряжения на статорной обмотке ЭД достигается желаемое уменьшение пусковых токов и связанных с ними величин провалов напряжения в питающей сети. Снижаются ударные воздействия на механические части электроприводов.

Но всегда следует иметь в виду, что реализуемый в УПП принцип подачи на ЭД пониженного напряжения неприемлем в случаях, когда пуски при прямой подаче номинального напряжения проходят недостаточно надежно и сопровождаются большими посадками напряжения.

Цель исследования

Среднее по функциональности устройство плавного пуска (УПП) позволяет решать следующие задачи:

• Ограничить пусковой ток ( в большинстве случаев на уровне 3 — 4,5 Iном) и просадки сетевого напряжения питания в зависимости от мощности силового трансформатора и характеристик подводящих шин питания;

• Оптимизировать пусковой и тормозной моменты для безударных разгонов и остановок приводимых механизмов, продлить срок использования подшипников, зубьев колёс редукторов, ремней и других деталей машин;

• Аварийно защитить питающую сеть от токовых перегрузок, заклинивания вала.

Тиристорный способ пуска похож на пуск при пониженном напряжении, который в прежние времена реализовывался как переключение «звезда — треугольник» или ступенчатый пуск от автотрансформатора. Благодаря тиристорам такой способ пуска не имеет недостатков ступенчатости двух последних способов, но, с точки зрения механических характеристик, не может сдвинуть «горб» области максимального момента к области нулевой скорости, и вынужден мириться с падением пускового момента при ограничении тока.

Тиристорный пуск не похож на пуск мотора с фазным ротором и тем более двигателя постоянного тока с последовательно включенной обмоткой возбуждения. В большинстве реальных ситуаций, когда мы модернизируем уже имеющийся механизм с имеющимся двигателем (асинхронным с короткозамкнутым ротором и обмотками, соединёнными в звезду), условно есть только 3 практических способа «умягчения» пуска:

• Автотрансформатор — на практике случаи применения автору не известны ни в советское, ни в настоящее время.

• Собственно устройство плавного пуска (УПП), позволяющее, в отличие от первого способа, гибко настраивать условия пуска на конкретном механизме под его уникальные условия.

• Частотный привод (преобразователь). Снижая стартовую частоту до единиц герц, мы, будучи также зажатыми «горбатой» характеристикой зависимости момента от скольжения, можем снизить пусковой ток, потребляемый из сети питания, до значений не выше номинального, даже при пуске под нагрузкой. Подробности пусковых (и не только пусковых) свойств частотных преобразователей — тема отдельной статьи.

В свою очередь, устройство плавного пуска (УПП) не может выполнить следующие функции:

• Регулировать частоту вращения двигателя в установившемся режиме;

• Реверсировать направление вращения;

• Увеличить пусковой момент относительно номинального;

• Снизить пусковой ток до значений меньших, чем требуется для вращения ротора в момент старта.

Ток обмотки в конкретный момент времени при скорости вращения вала меньше синхронной зависит от текущей скорости, а не от механической нагрузки. От последней при пуске зависит, как быстро завершится процесс пуска.

Сердцем силовой части УПП является классический симистор (два встречно-параллельно включенных тиристора с управляющим входом), включаемый последовательно между питающим проводником и обмоткой двигателя. Тиристор отпирается при условии приложения прямого напряжения анод-катод и одновременной подачи отпирающего потенциала или его импульса на управляющий электрод. Запирается тиристор только снижением тока в цепи «анод-катод-нагрузка» до значения, близкого к нулевому. В составе УПП тиристор исполняет роль быстродействующего полупроводникового контактора, включаемого напряжением, а выключаемого током.

Готовые УПП содержат симисторы, включаемые в одну, две или все три фазы, причём, при соединении обмоток треугольником, возможно включение симисторов не в фазу питания, а в разрыв обмотки. В этом случае ток через симистор снижается в 1,73 раза и позволяет выбрать менее мощное и более дешёвое УПП, но удваивает число необходимых кабелей (с допустимым током в те же 1,73 раза ниже). Входной контактор не обязателен только при отсутствии требований к гальванической развязке.

В пользу выбора одно- или двухфазных УПП говорят только более низкая цена в сочетании с возможностью использования в конкретном механизме.

Результаты исследования и их обсуждения

Однофазное регулирование. Через нерегулируемые фазы при разгоне двигателя протекает ток, соответствующий скольжению и моменту в конкретный момент времени. Поскольку время разгона больше вследствие плавности характера процесса пуска, тепловой режим нерегулируемой обмотки может оказаться даже хуже, чем при прямом пуске. Следует также отметить, что само по себе однофазное УПП не может аварийно остановить трёхфазный двигатель, максимум, что он может — выдать аварийный сигнал. Таким образом, схема применяется только там, где требуется смягчить пусковые удары в механической нагрузке в диапазоне мощностей до 11 кВт, а плавное торможение, длительный пуск и ограничение пускового тока не требуются. В связи с удешевлением тиристоров однофазные УПП снимаются с производства.

Двухфазное регулирование. Есть ограничение пускового тока, но несимметричность его ограничения в момент запуска и торможения также присутствует, так как управление отпиранием тиристора только в двух фазах не позволяет питать все три фазы абсолютно одинаково. Двухфазные УПП выпускаются для двигателей мощностью до 250 кВт и более, применяются в случаях, когда узким местом при запуске является не ограничение тока до гарантированной величины, а, как и для однофазных УПП, смягчение механических ударов. Многие модели снабжены внутренними контакторами, что удешевляет стоимость решения по запуску одного двигателя или нескольких параллельно подключенных.

Трёхфазное регулирование - самое технически совершенное решение, так как позволяет получить симметричное по фазам ограничение тока и силы магнитного поля, поэтому, в сравнении с двухфазным, при том же крутящем моменте силы в момент разгона двигателя, токовый режим максимально благоприятен и для двигателя, и для сети. Технически область применения универсальна, есть возможность применить динамическое торможение и подхват обратного хода мотора, хотя эта функция реализована не во всех моделях УПП. Мощность и напряжение питания двигателя ограничены только тепловой и электрической прочностью самих тиристоров.

Генерация управляющего сигнала для отпирания симисторов происходит в системе управления, которая в законченном виде (аппаратная +программная части) представляют собой ноу-хау производителя.

Время процесса включения — это время, за которое система плавного пуска увеличит напряжение на выходе от начального до полного.

Время выключения — это время, за которое напряжение на выходе системы снизится от полного до напряжения остановки (начального напряжения). Если время остановки равно нулю, это будет эквивалентно прямой остановке. Используется, когда необходима плавная остановка мотора, например, при работе с насосами или ленточными конвейерами.

Начальное напряжение иногда называется напряжением или крутящим моментом подставки. Это точка, в которой система мягкого пуска начинает или завершает процесс включения или выключения. Применяется для гарантированного трогания вала с места. При начальном напряжении 50% от номинального =90 градусов.

Ограничение тока может использоваться в тех случаях, когда требуется ограничение пускового тока или при пуске под большой нагрузкой, когда трудно обеспечить хороший старт заданием только начального напряжения и времени включения. При достижении предела ограничения тока система плавного пуска временно прекратит увеличение напряжения, пока ток не снизится ниже заданного предела, после чего процесс увеличения напряжения возобновится до достижения полного напряжения. Эта функция имеется не во всех УПП.

Функция BOOST поддержки напряжения позволяет получить пусковой момент для преодоления механического трения. Применяется, когда крутящий момент при пониженном стартовом напряжении недостаточен для трогания вала с места, но основной разгон уже стартовавшего двигателя можно выполнить и от пониженного напряжения.

Возможные применения функции BOOST — дробилки, тестомесы, мясорубки. Первые 0,2 с (10 полных периодов) тиристоры полностью открыты, и двигатель ведёт себя, как и при прямом пуске, и нагружает сеть соответствующим образом. Такая короткая по времени просадка в сети обычно не вызывает аварийных остановок других механизмов. Эта функция также имеется не во всех УПП.

Простейшие двухфазные УПП с плавным торможением на токи до 32 А собираются в пластиковом корпусе с креплением на 35 мм DIN-рейку. На передней панели находятся регулировки времени пуска, времени торможения и начального напряжения, винты клемм питания, выхода на двигатель, логических входов для подключения кнопок «Пуск» и «Стоп» и, при наличии, BOOST, и выходы сигналов ошибки и завершения процесса разгона. Более функционально продвинутые УПП позволяют устанавливать настройки и управлять процессом с интерактивной передней панели или по сетевому протоколу, реализуя, например, смену режимов пуска или последовательный запуск двигателей разной мощности.

Хотя процесс отпирания тиристора происходит лавинообразно, индуктивная составляющая сопротивления обмотки ограничивает скорость нарастания тока при включении, а выключение происходит в момент снижения тока до нуля. Специальные дроссели и фильтры ЭМС на практике не применяются. Уровень помех во всём спектре частот на порядки ниже, чем у частотного преобразователя той же мощности без дросселей и фильтров ЭМС.

Байпасный (обходной) контактор (БК) служит для питания двигателя в установившемся режиме, минуя тиристоры и, таким образом, облегчая их тепловой режим. Выбирается по категории АС-1, так как пусковые токи стандартного прямого включения через него не протекают. Многие двухфазные УПП имеют встроенный БК.

Все двигатели одной мощности, УПП выбирается из соображений мощность/продолжительность включения/температура в месте установки.

Типовые проблемы эксплуатации УПП и способы их решения.

Наиболее дорогие в плане восстановления устройства, потенциально подверженные поломкам вследствие ошибок:

• Силовой трансформатор питания сети с УПП;

• Собственно УПП;

• Двигатели;

• Механические части нагрузки (редукторы и исполнительные органы).

Ведущие мировые производители предлагают компьютерные программные средства, помогающие выбрать и УПП, и сопутствующие элементы схемы привода.

В идеальном случае, ограниченном только физическими принципами работы силовой части, УПП должно создавать плавно возрастающее по значению, начиная от стартового, круговое по форме магнитное поле, вращающееся со скоростью, заданной частотой питающей сети. Для этого тиристоры должны стоять во всех трёх фазах.

При эксплуатации привода в установившемся режиме без БК ток в обмотки продолжает поступать через тиристоры УПП. Последствия включения без ля двигателей и трансформаторов подробно описаны в [1, 2]. Последствия для УПП — только более тяжёлый тепловой режим. Корень всех минусов — в физических свойствах реальных тиристоров и погрешностях работы генератора отпирающих импульсов. Постоянная составляющая как следствие несимметричности полуволн тока, протекающего по цепи «вторичная обмотка трансформатора — тиристоры УПП — обмотка двигателя» возникает как совокупность следующих факторов: запирание тиристора происходит при некотором остаточном значении тока:

• между моментом подачи отпирающего импульса на управляющий электрод и моментом начала;

• протекания тока проходит время, называемое временем включения тиристора;

• не существует ни двух, ни тем более шести тиристоров, у которых эти 2 параметра точно совпадают;

• при появлении в сети мощной помехи могут происходить сбои в синхронизации тактового генератора.

Как показывают элементарные расчёты, в случае, описанном в [1], уровень постоянной составляющей тока по фазам при U=0.4 кВ составил не более 2% номинального для двигателя и менее 1% номинального для трансформатора. При всей кажущейся незначительности относительных величин, результаты не врут. Дешевле добавить в схему один контактор, чем ремонтировать двигатель, менять трансформатор мощностью в сотни и тысячи кВА и терпеть убытки от простоя оборудования.

Пусконаладочное параметрирование УПП.

Крутящий момент мотора будет уменьшаться пропорционально квадрату напряжения и, если начальное напряжение задано слишком малым, например 20 %, стартовый крутящий момент будет равен только 4 %, и мотор не начнет вращаться в самом начале процесса включения.

Поэтому очень важно находить такой уровень, при котором мотор начнет сразу работать, чтобы избежать ненужного перегрева. При завышенном начальном уровне пусковой ток и момент будут слишком мало отличаться от значений при прямом пуске.

Время включения не должно быть слишком большим, поскольку это приведет только к ненужному перегреву мотора и срабатыванию защитного реле. Если мотор не нагружен, время пуска мотора окажется меньше заданного, а если мотор сильно нагружен, то больше.

Выводы

Таким образом, тиристорное УПП, если применяется асинхронный двигатель с короткозамкнутым ротором, не дающий возможности переключать обмотки со звезды на треугольник на ходу, является самым массовым устройством для решения многих проблем, возникающих при прямом пуске.

При выборе решений по плавному пуску и торможению в механизмах, приводимых двигателями мощностью от десятков кВт и выше, необходимо стартовать от следующего:

• УПП должно иметь 3-фазное регулирование;

• При подключении к одному или параллельно соединённым нескольким двигателям, запускаемым синхронно, БК обязателен;

• При многодвигательном приводе на общую механическую нагрузку с раздельным пуском каждого двигателя (например, насосные станции) разумно использовать каскадный последовательный запуск/торможение;

• Имеющиеся механические охолостители нагрузки (например, байпасные трубопроводы в насосах и компрессорах) целесообразно оставить [3].