К числу главных причин, сдерживающих рост технико-экономических показателей в области крепления и поддержания горных выработок, относятся сложность и изменчивость горно-геологических условий, нарушения технологии изготовления крепи и крепления горной выработки, недостаточное внимание к вопросам обеспечения необходимой надежности крепи. Особую актуальность приобретает проблема повышения надежности крепей горных выработок в связи с постоянным увеличением объемов их проведения в сложных горно-геологических условиях.
Надежность, как вероятность устойчивого состояния горных выработок, зависит от многих факторов, и прежде всего от обоснованности проектных решений, т.е. от того, с какой точностью выбранные в проекте характеристики крепи соответствуют фактической интенсивности проявлений горного давления.
Исследование физико-механических процессов в массиве вмещающих горных пород при проведении горных выработок определяет их устойчивость.
К аномальным относятся участки выработок, находящиеся в зонах: влияния геологических пликативных и дизъюнктивных нарушений; повышенной трещиноватости вмещающих пород и угля; повышенной обводненностивмещающих пород и угля; повышенного горного давления на подработанных или надработанных пластах свиты; на пластах опасных, угрожаемых, а также несклонных к горным ударам и внезапным выбросам угля(породы) и газа; в ненарушенном массиве; в зонах повышенного горного давления, в зонах влияния пликативных и дизъюнктивных нарушений; вне зон и в зонах влияния очистного выработанного пространства; в обводненных и необводненных породах и др.
К факторам, которые влияют на возможность применять определённые анкерные системы при проведении подготовительных выработок относятся: прочность анкерного крепления во вмещающих породах; размер зон опасных деформаций породы вокруг горных выработок; величина смещений горных пород, находящихся в кровле, величина конвергенции, срок службы выработки, а также предельная величина безопасного смещения (опускания) пород кровли, закреплённых в горной выработке.
Рис. 1. Технологическая схема крепления неустойчивых пород кровли впереди выработки: 1 – затяжка их досок; 2 – скрепляющий заполняющий раствор в зону вывала пород; 3, 4 – соответственно 1 и 2-ая стадия крепления
Для того чтобы определить функциональные возможности разных видов крепи необходимо проведение сравнительных исследований. В ходе исследований осуществляется характеристика проявлений горного давления при креплении выработки анкерами, комбинированной или рамной крепью и выявление уровня работоспособности анкерного крепления.
На рис. 1 представлена схема технологии крепления неустойчивых пород кровли впереди выработки.
Ниже представлено разработанное устройство крепления контуров выработки в неустойчивых горных породах.
Устройство крепления контуров выработки в неустойчивых горных породах.
Может быть использовано при разработке пластовых месторождений полезных ископаемых при проведении горных выработок для закрепления массива вмещающих пород с помощью анкерного крепления, для исключения куполообразования, повышения безопасности ведения горных работ с использованием анкерного крепления – рис. 2.
а
б
Рис. 2. Технология крепления забоя выработки при пересечении неустойчивых пород (профиль, сечение): а – при круговой схеме; б – при рядной схеме укрепления контура неустойчивых пород
Наиболее близким к заявляемому техническому решению является полимерный анкер, включающий пластиковый стержень, опорную плитку и фиксирующую гайку [1] – рис. 3.
а
б
Рис. 3. Крепь анкерная: цельная – АПн (а) и составная –АПн-С: 1 – стержень анкера; 2 – гайка; 3 – шайба опорная; 4 – стержень анкера; 5 – муфта
Недостатком прототипа является трудоемкость возведения анкерного крепления, а также трудоемкостью возведения рамной крепи.
Задачей применения является – предотвращение куполообразования и создание безопасных условий при креплении забоя выработки.
Наиболее близким к применению видов крепи является сталеполимерный анкер, включающий стержень из арматуры винтового профиля, устанавливаемый в шпур с размещенными в нем ампулами с закрепляющей смесью, опорную демпферную тарельчатую шайбу, закрепляющую гайку полусферическую гайку [2, 3].
Недостатком указанного анкера является то, что сталеполимерный анкер по своему составу не может взаимодействовать с массивом как временная крепь, поддающаяся разрубки исполнительным органом комбайна.
Технический результат: предотвращения куполообразования, повышения техники безопасности при установке анкерной и рамной крепей.
Технический результат достигается за счет того что, установленный в шпур устройство крепления контуров выработки внеустойчивых горных породах-составной анкер, с быстрым временем схватывания ампул с закрепляющим составом скрепляет породно-угольные слои, предотвращает куполообразования, а также уменьшает газовыделения из трещин кровли.
Представлена технология закрепления устройством для крепления контуров выработки в неустойчивых горных породах – составными анкерами (профиль выработки) – рис. 4, а; на рис. 4, б – вид 1-1 – поперечное сечение выработки. На рис. 5, а показан общий вид устройства крепления контуров выработки в неустойчивых горных породах – составного анкера; рис. 5, б – узел А – соединительная муфта (в разрезе); рис. 5, в – сборный узел соединения пластмассовой и стальной частей устройства крепления контуров выработки в неустойчивых горных породах – составного анкера с соединительной муфтой в диметрии.
а б
Рис. 4. Технология закрепления устройствомдля крепления контуров выработки в неустойчивых горных породах: а – металическая часть анкера; б – наклонный составной комбинированный анкер
а |
б |
в |
Рис. 5. Соединительная муфта: а – составной анкер в сборе; б – разрез; в – диметрия; 1 и 3 – верхняя (металлическая) и нижняя (пластмассовая) части составного комбинированного анкера; 2 – соединительная муфта
Устройство крепления контуров выработки в неустойчивых горных породах – составной анкер включает стержень из металлической арматуры 1 винтового профиля, соединительной муфты 2 и пластикового стержня 3 и устанавливается в шпур с размещенными в нем ампулами с закрепляющей смесью, опорную демпферную тарелку, шайбу и закрепляющую полусферическую гайку (см. рис. 5). Отличается устройство крепления контуров выработки в неустойчивых горных породах – составной анкер тем, что состоит на треть его длины из пластикового стержня (3) со стороны устья шпура и двух третей длины со стороны забоя шпура – сталеполимерного стержня 1, соединенных муфтой 2.
Установка устройства крепления контуров выработки в неустойчивых горных породах-составного анкера, состоящего из стальной арматуры 1, соединительной муфты 2, пластикового стержня анкера 3, осуществляется следующим образом. В пробуренный в горном массиве шпур вводят ампулы с химическим скрепляющим составом, следом устанавливают устройство крепления контуров выработки в неустойчивых горных породах-составной анкер, который монтируется под проектный уровень кровли под углом 35*450, наперед наклоненный для подхватывания неустойчивых пород кровли впереди забоя подготовительной выработки), заполняя трещины неустойчивой кровли, не допуская возможности расслаивания горных пород и куполообразования.
Применение способа крепления устройствами крепления контуров выработки в неустойчивых горных породах-составными анкерами с закрепляющими ампулами с быстрым временем схватывания (15-20 сек.) и с пластиковой нижней частью анкера не допускает образования куполообразования, не мешает за продвижением забоя по выемке и отгрузке горной массы, и легко разрушатся проходческим комбайном.
Новизна конструктивной схемы анкера заключается в том, что в составной части из арматуры и пластикового стержня, что позволяет усилить верхние породно-угольные слои кровли, в которой будет работать несущая способность именно верхняя часть сталеполимерного анкера – рис. 6, а.
а б
Рис. 6. Определение зон пластических деформаций в кровле выработки в зависимости от мощности пласта (а) и плотности установки анкеров в зависимости от глубины ведения работ, величины зоны пластических деформаций, мощности слоя пород, расстояния и количества канатных анкеров (б): 1 – придание кровли выработки формы, по породам напластования; 2 – породы основной кровли; 3 – анкеры глубокого заложения (с обеспечением необходимой плотности крепления по ширине кровли выработки); 4 – стальные анкеры; 5 – породы непосредственной почвы; 6 – угольный пласт; 7 – породы непосредственной почвы; 8 – расстояние (трещинообразие) в малопрочный и неустойчивых вмещающих городах кровли. Н – глубина работ; Зпл – зона пластических деформаций, м; Тсл – мощность слоя пород, м; R – расстояние между тросовыми анкерами, м; Ика – количество канатных анкеров, шт
Вторая часть анкера состоит из пластикового стержня, которая соединяется вкручиванием по резьбе соединительной муфтой с внутренней резьбой. Далее бурится шпур диаметром 28 мм, наполняется химическими ампулами 650 мм*2 шт., со временем твердения 60 сек. и одной ампулой АМК 350 с быстрым временем схватывания 30 сек. (со стороны забоя шпура).
В отличие от составного катанного или сталеполимерного анкера, составной пластиково-сталеполимерного анкер, легко подается зарубке комбайном, не оставляет «торчунов» от анкеров, а верхняя часть анкера укрепляет верхний слой пород кровли.
На рис. 6, б представлено определение зон пластических деформаций в кровле выработки в зависимости от мощности пласта и плотности установки анкеров, а на рис. 7 – соответственно – глубина анкерирования вмещающих пород за контуром выработки.
Рис. 7. Глубина анкерирования вмещающих пород за контуром выработки
При проведении горных выработок и разработке угольных пластов вследствие нарушения равновесия горных пород и перераспределения естественных напряжений в шахтах возникают геомеханические процессы, реализующиеся в деформациях, разрушении, перемещении и сдвижении различных масс горного массива. На развитие горного давления, возникающего в результате взаимодействия углевмещающих пород с горными выработками, решающее влияние оказывают геологические, горнотехнические и технологические факторы.Геомеханические условия поддержания выемочных выработок в бассейне на большой глубине отличаются повышенной сложностью из-за малой прочности вмещающих угольные пласты пород, особенно почв, которые уже при незначительной концентрации горного давления склонны к интенсивному пучению. Деформированное состояние массивов является cледствием взаимодействия полей напряжений и cвойств массива (большей частью, физико-механических). Представлены результаты научно-прикладных исследований производственных процессов технологии ведения подготовительных работ в сложных горно-технических условиях отработки угольных пластов; созданию способов управления геомеханическими процессами при ведении горных работ на глубоких горизонтах угольных шахт.