После развала системы хозяйствования, сложившейся в СССР, финансирование оросительных систем находится на низком уровне, который не позволяет комплексный производить капитальный ремонт, несмотря на некоторые положительные тенденции последних лет. В связи с этим большое значение имеет снижение эксплуатационных затрат, в том числе и связанное с удешевлением ремонтных работ.
В Волгоградской области расположены несколько крупных оросительно-обводнительных систем (ООС). Основными водоводами являются открытые оросительные каналы, как в земляном русле, так и с устройством сборной и монолитной железобетонной облицовки. В качестве крепления откосов магистральных каналов различного уровня и противофильтрационных облицовок в основном применяются железобетонные сборные облицовки с пленочным противофильтрационным экраном, или с комбинированным грунтопленочным экраном (рис. 1) [1].
Чтобы избежать наползания плит друг на друга, во многих случаях откос перекрыт одной плитой по всей длине и стык плиты замоноличен по дну и бровке канала (рис. 2).
Рис. 1. Крепление канала из сборного железобетона: 1 – сборная плита; 2 – монолитный железобетон; 3 – пленка ПВХ; 4 – битум; 5, 6 – заполнители швов
Рис. 2. Магистральный канал Райгородской ООС Волгоградской области
Рис. 3. Горизонтальное расположение плит сборной железобетонной облицовки (Заволжская ООС)
В тоже время при строительстве каналов используют и другие варианты расположения плит сборной железобетонной облицовки (рис. 3).
Одним из часто встречающихся повреждений облицовок мелиоративных каналов является вымывание подстилающего грунта и образование пустот, что может приводить к смещению и повреждению облицовки (рис. 2, 4) и значительному увеличению фильтрации, которая и без этого являются основной статьей потерь при транспортировке оросительной воды [2].
Рис. 4. Размыв основания железобетонной облицовки и сползание железобетонных плит
Для ремонта подобных повреждений и предотвращения смещения плит облицовки требуется набор операций, аналогичный работам по строительству каналов, то есть – демонтаж части противофильтрационных одежд в месте образования пустот, восстановление планировки откосов и показателей грунтового основания, обработка грунтового основания гербицидами, восстановление пленочного экрана и монтаж сборных железобетонных плит [3, 4].
Ремонтные работы, произведенные таким образом восстанавливают состояние противофильтрационных одежд и основания практически до проектных значений, но практическое их осуществление в процессе эксплуатации очень трудоемко, так как требует, кроме прямых работ по ремонту, произвести работы по опорожнению и подготовке русла. Еще одним недостатком является то, что на время проведения работ необходимо остановить или серьезно ограничить подачу оросительной воды, а это возможно далеко не всегда.
Кроме того, известны способы ремонта поверхностных дефектов бетонных и железобетонных гидротехнических сооружений без приостановки эксплуатации сооружений, но данный способ не подходит для данного типа повреждений противофильтрационных одежд [5].
Более экономичным и требующим меньших трудовых и временных затрат, на наш взгляд, является способ, при котором с поверхности земли по трубопроводу в пустоты под облицовкой подается строительная смесь (на основе минерального вяжущего), впоследствии затвердевающая и герметизирующая их.
При использовании такого способа восстановления эксплуатационных противофильтрационных характеристик мелиоративных каналов, если при возведении плиты крепления были расположены длинной стороной вдоль откоса (рис. 3) в несколько рядов, существует вероятность того, что при подаче строительная смесь своей массой вытолкнет плиту, что совершенно недопустимо. Поэтому объем послойно укладываемой смеси необходимо устанавливать расчетным способом в зависимости от размеров пустот. Размеры пустот могут определяться различными методами неразрушающего контроля и геолокации, например, при помощи устройства для проведения эксплуатационного мониторинга водопроводящих каналов [6, 7], или методики применения комплекса методов неразрушающего контроля для выявления полостей под плитами крепления грунтовых откосов каналов [8].
В качестве расчетного случая принято такое состояние канала, при котором плита облицовки, под которой обнаружена и зафиксирована пустотность, полностью находится под поверхностью воды. В расчете принята плита крепления с напрягаемой арматурой, геометрические и физические характеристики согласно ГОСТ 22930-87 [9].
Силовые факторы, учитываемые при моделировании процесса заполнения пустоты строительным раствором – сила гидростатического давления воды, собственный вес плиты облицовки, сила гидростатического давления строительного раствора (рис. 5).
Рис. 5. Схема приложения нагрузок
Допущения, принятые при моделировании процесса согласно предлагаемому способу ремонта:
– бoльшая часть пустотности располагается под одной единственной плитой;
– плита опирается своими короткими сторонами на грунт;
– трение торцевых граней плиты о соседние плиты и о материал деформационных швов не учитывается;
– строительная смесь подается безнапорно;
Приведем условие равновесия плиты в векторной форме:
(1)
где – равнодействующая сила гидростатического давления строительной смеси; – равнодействующая сила гидростатического давления воды на площадке w, смоченной строительной смесью; – сила собственного веса плиты облицовки.
Запишем условие равновесия в проекциях для выбранной прямоугольной системы координат на ось абсцисс, которая параллельна плоскости плиты облицовки (рис. 5):
Pсм – Pв – Fтяж•cos α = 0, (2)
где α – угол между горизонтом и откосом канала.
С учетом схемы (рис. 5) можно сделать вывод, что плита облицовки сохранит свое положение в том случае, если будет соблюдено неравенство:
Pсм ≤ Pв + Fтяж•cos α. (3)
Значение равнодействущих сил гидростатического давления воды и строительной смеси определяется в соответствии с [10] и схемой (рис. 5):
Pв = ρв∙g∙hц∙ω;
Pсм = (pв + ρсм∙g∙hцсм)∙ω, (4)
где pв – гидростатическое давление воды на поверхности строительной смеси, МПа; ρв – плотность воды, кг/м3; hц – толщина слоя воды над центром тяжести смоченной поверхности плиты, м; ρсм – плотность строительной смеси, кг/м3; w – площадь смоченной поверхности плиты покрытия.
Неравенство (3) можно представить в виде
Pсм – Pв – Fтяж•cos α ≤ 0. (5)
Для дальнейших рассуждений введем следующие обозначения:
ω = lсм bсм; (6)
(7)
hц = hА – 0,5•hсм; (8)
hцсм = 0,5•hсм, (9)
где lсм – предположительная длина смоченного строительной смесью участка плиты покрытия, м; bсм – ширина смоченной поверхности плиты покрытия, м; hсм – толщина слоя строительной смеси, м; hА – толщина слоя воды над нижней гранью плиты покрытия, под которой располагается дефект, м.
Решение неравенства (5) относительно hсм с учетом (4), (6), (7), (8) и (9) даст следующее соотношение для определения критической толщины слоя строительной смеси при заполнении дефекта.
(10)
где m – масса плиты крепления, т.
Приведем пример расчета критической толщины слоя строительной смеси. Примем следующие исходные данные – геометрические размеры сечения канала приведены на рис. 6, облицовка выполнена из плит ПКН60.15 [9], масса плиты 1,35 т, размеры 6000*1500*60 мм, строительная смесь цементно-песчаная плотностью 1500 кг/м3.
Рис. 6. Геометрические размеры сечения канала (в мм)
(11)
На основании вышеизложенного при проведении ремонтных работ рекомендуется устанавливать величину слоя строительной смеси расчетом по приведенному алгоритму.