Scientific journal
International Journal of Applied and fundamental research
ISSN 1996-3955
ИФ РИНЦ = 0,564

SOME BIOCHEMICAL INDICES IN THE DIAGNOSIS OF HEREDITARY COLLAGENOPATHIES

Askerova T.A. 1 Yagubova V.I. 1 Velieva G.A. 1 Gasanova G.T. 2
1 Department of biochemistry of Azerbaijan Medical University
2 Republican Hospital
1723 KB
Were studied biochemical parameters of serum oxyproline (OP) and glycosaminoglycans (GAG) in the blood and urine of patients with hereditary collagenopathies. To assess these indicators, the blood and urine of 172 patients with hereditary collagenopathies were examined. OP was determined by spectrophotometric method on Mini-Screen apparatus at a wavelength of 558 nm. Varions forms of GAGs in urine were determied by electrophoresis on asetate-cellulose films. The amount of GAG in the blood was determined by immuno­enzyme method using a test of the BlueGene Biotech company(China). As a result of the research, it was revealed that in 53,5 % of patients the level of GAG was 2 times higher, in 18,6 % of the examined patients this index was lower in comparison with the control group. In about half of the patients excretion of OP in daily urine was significant and exceeded the normal value by more than 2 times. Significant changes in these indices were also found in the blood. It was established that the consentration of OP can be on low and high values. GAG were 1,7 times higher in comparison with the control group. Summarizing the above data, it may be noted that among the diagnostic tests an important role belongs to the definition of OP and GAG in the blood.
hereditary collagenopathies
oxyproline
glycosaminoglycans

Для наследственных коллагенопатий характерна относительно частая встречаемость патологий как в педиатрической, так и в терапевтической практике, проградиентность течения, полиорганность поражения выраженный клинический полиморфизм, ранняя инвалидизация и даже смерть больных в молодом возрасте [4, 9].

Как известно, коллагены являются семейством внеклеточных матриксных белков, играющих важную роль в поддержании целостности органов и тканей, водно-солевого равновесия участвующих в процессах иммунологической защиты организма, заживлении ран, переломов костей, агрегации тромбоцитов и др. [5–7]. Мутации в генах, отвечающих за синтез этих белков, или дефицит активности посттрансляционных ферментов синтеза коллагенов приводят к возникновению таких наследственных болезней, как несовершенный остеогенез, некоторые типы синдрома Элерса – Данлоса, синдром Марфана, синдром Альпорте, дистрофические формы буллезного эпидермолиза, значительное число хондродисплазии, сходные мутации обнаружены также при остеоартрозе, различных вариантах остеопороза и др. [10, 11]. Другой серьезной проблемой практической медицины считаются болезни, сопровождающиеся избыточным синтезом коллагена, что приводит к развитию фиброза легких, печени и почек. В основе этих заболеваний лежат генетические дефекты, сопровождающиеся снижением активности ферментов, принимающие участие в распаде коллагеновых белков [12]. При изучении биохимических показателей коллагенопатии было показано, что уровень оксипролина (ОП) в крови, экскреция его с мочой вместе с его метаболитами коллагенов, а также глюкозамингликанов (ГАГ) в указанных биохимических материалах метаболитов, основного вещества соединительной ткани (СТ), изменяется закономерно в зависимости от возраста клинических и генетических форм заболевания.

Основной диагностический показатель наследственных коллагенопатий глюкозамингликаны (ГАГ) по химической структуре являются линейными полимерами содержащими аминосахар (N-ацетилированный или N-сульфатированный) и уроновую или идуроновую кислоту, образующие специфические для каждого типа дисахаридазные единицы. Посредством цепей глюкозамингликанов и стержневого белка протеогликаны взаимодействуют с коллагеновыми белками, фибронектином, протеиназами, ростовыми факторами, нейромедиаторами, гормонами, липопротеидами, мембранными рецепторами и ионами.

Глюкозамингликаны разделяют на две неоднородные группы – несульфатированные (гиалуроновая кислота, хондроитин) и сульфатированные. Последние представлены гепарансульфатом, который по своим химическим свойствам сходен с гепарином, хондроитин-4-сульфатом, хондроитин-6-сульфатом (для обоих соединений характерно наличие дисахаридазной единицы, состоящей из N-ацетил, Д-галактозамин и Д-глюкуроновой кислоты), дерматансульфатом, в котором повторяющаяся дисахаридазная единица содержит сульфатированный N-ацетил, Д-галактозамин и L-идуроновую кислоту, гепарином и кератансульфатом. Последний, однако, не является истинным глюкозамингликаном, так как не содержит уроновой кислоты. Соотношение глюкозамингликанов в разных типах тканей варьируется.

Другим показателем обмена коллагена является оксипролин. Оксипролин – одна из основных аминокислот коллагена, что позволяет считать его маркером, отражающим катаболизм этого белка. Около 20 % оксипролинсодержащих пептидов, высвобождаемых из коллагеновых молекул, экскретируются с мочой, а 80 % метаболизируются в печени. Практически 90 % оксипролина мочи является компонентом пептидов небольшой молекулярной массы, а около 9 % большой (преимущественно фрагментов N-концевых пропептидов проколлагена I типа). В свободном виде находится только 1,0 % оксипролина. Поэтому увеличение количества свободного и, соответственно, снижение уровня связанного оксипролина может косвенно свидетельствовать о нарушении синтеза коллагена.

Генетические дефекты синтеза коллагена приводят к уменьшению числа легко растворимого коллагена. Именно поэтому у пациентов с наследственными коллагенопатиями отмечается достоверное повышение количества оксипролина в суточной моче, выраженность которого коррелирует с тяжестью патологического процесса.

Изучение наследственных коллагенопатий в Азербайджанской Республике показало распространение этой патологии. В эндемических очагах республики уровень наследственных коллагенопатий составляет 15 %. Поэтому разработка комплексных методов диагностики для нашей республики является очень важной и актуальной [1, 2].

Таким образом, целью данной работы является исследование биохимических показателей метаболитов коллагена и основного вещества СТ среди больных с наследственнными коллагенопатиями.

Материалы и методы исследования

Собственные наблюдения составили 172 больных в основном с диагнозом синдрома Марфана, несовершенного остеогенеза и семейного пролапса митрального клапана в возрасте от 2 до 39 лет – 80 женщин и 92 мужчин из 110 семей, а также их 120 здоровых родственников I и II степени родства. Контрольную группу составили 20 здоровых лиц в возрасте от 2 до 39 лет. Клинический протокол обследования семей включал: данные анамнеза жизни и болезни, анализ первичной медицинской документации пробанда и членов его семьи, составление родословных и результаты лабораторных методов исследования. Клинический диагноз больных был поставлен врачами. Для диагноза наследственных коллагенопатий исследовали определение оксипролина по П.Н. Шараеву (1981) [8]. Количество и различные формы глюкозамингликанов в моче электрофорезом на ацетат и целлюлозных пленках [3]. Количественный анализ глюкозамингликанов исследовали иммуноферментным методом с помощью теста фирмы BlueGene Biotech (China).

Результаты исследования и их обсуждение

В табл. 1 представлены показатели экскреции оксипролина в суточной моче больных с коллагенопатиями. Среди обследованных было выделено три группы: с уровнем анализированных показателей 100 % (I группа); 150 % (II группа) и более 150 % (III группа).

Проведенный анализ выявил у большинства обследованных (у 129 из 172 (75 %)) повышение выделения с суточной мочой ОП, которое отражал процесс катаболизма и синтеза коллагена. Примерно у половины (49,3 %) больных детей экскреция ОП была значительной и превышала должную величину более чем в 2 раза. Практически у трети (29,6 %) пациентов повышение этого показателя было умеренным и составило в среднем 122,1 ± 1,9 мг/сут. У четверти (25,0 %) обследованных выявлено снижение экскреции ОП, что может свидетельствовать об угнетении резорбции коллагена у этих больных. С другой стороны, с увеличением возраста больных и продолжительностью клинического течения болезни наблюдаются более высокие нарушения в обмене коллагена. В табл. 2 представлены данные глюкозамингликанов в суточной моче у больных с коллагенопатиями.

Как видно из таблицы, среди 172 обследованных больных у 140 (81,4 %) экскреция глюкозамингликанов с мочой выше по сравнению с контрольной группой. В этой группе больных полученные данные показывают активацию катаболизма межклеточных соединительной ткани. У 53,5 % больных уровень ГАГ был в 2 раза выше нормы. Однако у 18,6 % обследованных уровень ГАГ по сравнению с контрольной группой было ниже. А это показывает о низком межклеточном катаболизме соединительной ткани. Во второй группе установлено увеличение количества оксипролина и глюкозамингликанов одновременно. В группе больных, где уровень ГАГ был ниже 100 %, наблюдали повышение ОП в суточной моче. Такая комбинация биохимических показателей выявила у больных тяжелое течение заболевания. У больных с высоким содержанием (до > 150 %) ГАГ в суточной моче выявляли также снижение ОП более 100 % и клиническое течение заболевания было более мягким. Наличие достоверной взаимосвязи между изолированным нарушением экскреции ГАГ в суточной моче и тяжестью клинической картины заболевание показывает важность исследования данных биохимических показателей.

В следующей табл. 3 представлены показатели ОП и ГАГ в крови среди обследованных больных.

Количество сывороточного ОП среди больных выявлено в двух диапазонах. Больные, имеющие низкий уровень оксипролина и лица с повышенными показателями. Среди больных низкий уровень оксипролина было 51,1 ± 1,28 мкг % (10,1–109,7). Данный показатель ниже на 4,6 раз по сравнению с контрольной группой. Низкий уровень ОП в крови сопровождается повышенной экскрецией оксипролина в суточной моче. Повышенный уровень ОП в крови колебался от 181,0 до 359,2, в среднем 225,6 ± 4,11. Сравнение этих данных с контрольной группой показало, что здесь изменения незначительные. Уровень ГАГ же среди обследованных было 11,2 ± 4,75 мкг %. Данный показатель был повышен на 1,7 раз по сравнению с контрольной группой. Количество ГАГ в крови было ниже от показателей установленных в суточной моче.

Таблица 1

Экскреция оксипролина в суточной моче больных с коллагенопатиями

Группы

n

%

ОР в суточной моче, мг/сут

Норма

P

I группа – до 100 %

43

25,0

42,07 ± 2,01

59,05 ± 2,19

< 0,001

II группа – до 150 %

51

29,06

70,28 ± 3,39

57,54 ± 2,67

< 0,001

III > 150 %

78

46,03

142,54 ± 5,88

62,54 ± 1,35

< 0,001

Всего

72

100

255 ± 11,28

179,0 ± 6,21

< 0,001

Примечание. n – количество больных; P – достоверность показателей.

Таблица 2

Экскреции глюкозамингликанов в суточной моче больных с коллагенопатиями

Группы

n

%

ГАГ в суточной моче, мг/сут

Норма

мг/сут

P

% кД

ГАГ

I группа – до 100 %

32

18,6

4,37 ± 0,19

59,05 ± 2,19

< 0,001

79,9 ± 3,05

II группа – до 150 %

48

27,9

6,67 ± 0,21

57,54 ± 2,67

< 0,001

122,4 ± 2,17

III > 150 %

92

53,5

12,24 ± 0,44

62,54 ± 1,35

< 0,01

238,1 ± 7,04

Всего

172

100

23,28 ± 1,19

179,0 ± 6,21

< 0,001

440,0 ± 7,04

Примечание. n – количество больных; % кД ГАГ – степень отклонения от показателей контрольной группы экскреции ГАГ, выраженная в процентах.

Таблица 3

Биохимические показатели ОП и ГАГ в крови среди больных с коллагенопатиями

Обследованные больные

Контрольная группа,

n = 20 мкг %

Больные с низким содержанием ОП, мкг %

Больные с высоким содержанием ОП, мкг %

Количество ГАГ в крови, мг %

Контрольная группа,

n = 20 мкг %

Больные с наследственными коллагенопатиями, n = 172

234,5 ± 14,73

(180,6–384,3)

51,1 ± 1,28

(10,1–109,7)

225,6 ± 4,11

(181,0–359,0)

11,2 ± 4,75

6,6 ± 2,79

 

Таким образом, выявление наследственных коллагенопатий возможно только на основании комплексных диагностических тестов исследования в крови и мочи. Резюмируя вышеуказанные данные можно отметить, что среди диагностических тестов важная роль принадлежит ОП и ГАГ.