С целью определения влияния комплексной добавки полифункционального действия СС-3ТН на процессы структурообразования, изучено влияние дозировки на сроки схватывания. В табл. 1 приведены результаты испытаний цементного теста по определению нормальной густоты и сроков схватывания.
Анализ полученных результатов показывает, что добавка СС-3ТН снижает нормальную густоту с 27 % до 24,5 % в зависимости от дозировки и изменяет сроки начала схватывания с 3 часов до 1,6 часа, а конца с 5,5 до 3,1 часов. Можно предположить, что сочетание суперпластификатора С-3 и ускорителя твердения тиосульфата натрия подобрано в оптимальных соотношениях. Индивидуальное применение отдельных компонентов комплексной добавки полифункционального действия не позволяет комплексно влиять одновременно на нормальную густоту цементного теста и сроки схватывания [1, 2].
Исследования формирования структуры цементного камня в зависимости от различных факторов проводились рядом исследователей [3].
При проведении исследований ставилась задача по выяснению влияния комплексной добавки полифункционального действия СС-3ТН на свойства цементного камня в условиях естественного твердения, вида и строения продуктов гидратации, характера распределения и строения порового пространства цементного камня.
Структура цементного камня изучалась методами рентгеноструктурного, петрографического анализа и сканирующей электронной микроскопии (СЭМ) [1, 3].
Исследованию на СЭМ подвергался скол цементного камня после его наклейки на подложку и последующего напыления на его поверхность графита в вакуумной установке. Фотографирование поверхности скола СЭМ также проводилось при вакуумировании образцов, что было учтено при анализе фотоматериалов.
Дополнительно изучались шлифы срезов цементного камня, полученные путем их наклейки на стеклянную подложку и последующего шлифования до получения полупрозрачного шлифа. Шлифы в основном использовались для уточнения закристаллизованности вяжущего, определения размеров кристаллогидратов и анализа контактных швов при склейке поверхностей без применения клеев.
Количество пор и их размеры определялись методом их подсчета с использованием метрических приборов (сетка и линейка), учитывающих рабочее увеличение изображения исследуемой поверхности цементного камня. Известно, что дисперсность новообразований и их количество при гидратации вяжущего в присутствии ПАВ увеличивается в сравнении с гидратирующим вяжущим без добавки. При этом повышается плотность и упорядочивается структурная пористость цементного камня. Это объясняется тем, что адсорбировавшаяся молекула ПАВ замедляет рост новообразования, что в свою очередь порождает появление новых активных центров и повторение процесса [2].
Можно предположить, что добавка СС-3ТН также будет изменять структуру и пористость цементного камня. Различие микроструктуры цементного камня с добавкой и без добавки СС-3ТН показывает, что цементный камень без добавки (рис. 1, а) имеет более трещиноватую структуру и менее плотную упаковку гидратных новообразований. Кроме того, в его составе обнаружены в значительных количествах усадочные трещины, которые можно связывать с его высыханием при твердении в естественных условиях в ранние сроки – 1…3 суток. Цементный камень с добавкой СС-3ТН имеет более плотную упаковку кристаллогидратов, и в нем практически отсутствуют усадочные трещины, что можно связывать с нормальным твердением в естественных условиях.
Таблица 1
Влияние комплексной добавки полифункционального действия СС-3ТН на нормальную густоту и сроки схватывания цементного теста
Наименование добавки |
Количество от массы цемента, % |
Нормальная густота, % |
Сроки схватывания, ч |
|
начало |
конец |
|||
Без добавки |
– |
28 |
3,0 |
5,5 |
СС-3ТН |
2 |
27 |
2,6 |
5,1 |
СС-3ТН |
3 |
26 |
2,3 |
4,6 |
СС-3ТН |
4 |
25 |
2,1 |
3,65 |
СС-3ТН |
5 |
24,5 |
1,6 |
3,1 |
КОД-С |
0,6 |
26 |
3,6 |
5,1 |
С-3 |
0,7 |
25 |
4,1 |
6,1 |
а) б)
Рис. 1. Микроструктура цементного камня после 28 суток естественного твердения: а) без добавки; б) с добавкой СС-3ТН
Заметно влияние СС-3ТН на шлаковые зерна, которые имеют разрушенную структуру [1, 2]. Раскалывание шлакового зерна можно связывать с воздействием на него тиосульфата натрия, который активирует растворение его остеклованной поверхности, повышая его гидравлическую активность, кристаллизуется в образующихся микротрещинах и в результате разрушает его. На рис. 1, б, видно образование продуктов взаимодействия тиосульфата натрия и осколков шлакового зерна в виде светлого налета на их поверхности.
Поровая структура цементного камня с СС-3ТН в значительной степени отличается от поровой структуры цементного камня без добавки (рис. 2, а, б). Распределение пор в цементном камне без добавки более хаотичное и неоднородное, как по плотности, так и по размерам. Внутри пор наблюдаются различные кристаллы, например, многоугольника Са(ОН)2, заполняющие пору. Структура рыхлая, трещиноватая, контакт со шлаковым зерном в верхней части поры неплотный [2].
Цементный камень с комплексной добавкой полифункционального действия СС-3ТН имеет равномерное распределение пор и более близкий их размер друг к другу. Дно поры имеет гладкую поверхность, переходящую через контактную золу в плотный камень (рис. 2, б).
Зерна шлака плотно впаяны в структуру вяжущего, усадочных трещин значительно меньше. Гладкую поверхность пор можно связывать с гидрофобными свойствами их поверхности, препятствующими кристаллизации извести и других соединений. Гидрофобизированные поры значительно сильнее, чем гидрофобные, препятствуют накоплению и миграции через них как воды, так и водных растворов различных соединений. Флегматизация массопереноса создает благоприятные условия для его работы в условиях агрессивной среды при твердении в естественных условиях.
а) б)
Рис. 2. Строение пор цементного камня (28 суток естественного твердения): а) без добавки; б) с добавкой СС-3ТН
а) б)
Рис. 3. Микроструктура цементного камня (28 суток естественного твердения): а) пора с продуктами совместной гидратации ТСН и цементного теста; б) зерно шлака, диспергированное воздействием ТСН
а) б)
Рис. 4. Петрография цементного камня (28 суток неестественного твердения): а) без добавки; б) с добавкой СС-3ТН
Таблица 2
Влияние добавки на размеры и количество пор цементного камня
Материал |
В/Ц |
Характеристики образцов |
Пористость образцов, % |
Состав по пористости |
||
возраст, сут. |
условия твердения |
диаметр х 10-2 см |
количество, % |
|||
Цементный камень без добавки |
0,48 |
28 |
естественное |
2,21 |
0,1…0,6 0,6…1,6 1,6…10,0 |
31 39 30 |
Цементный камень с добавкой СС-3ТН |
0,39 |
28 |
естественное |
1,64 |
0,1…0,5 0,5…1,0 1,0…4,0 |
36 47 17 |
С целью уточнения действия тиосульфата натрия на структуру цементного камня его добавляли в цементную пасту в количестве индивидуально от 2 % до 8 % массы вяжущего. Исследования показали, что присутствие ТСН влияет на плотность цементного камня, пористость, однородность и структуру новообразования. Большая дозировка ТСН от массы вяжущего произведена с целью установления новообразований в цементном камне на рентгеноустановке. Анализ результатов как СЭМ, так и рентгеноструктуры позволяет предположить, что в результате взаимодействия ТСН с вяжущим образуются кальциевые соли тиосульфата, которые более устойчивы, чем соли тиосульфата натрия. Подтверждается также диспергирующее действие его на зерна шлака (рис. 3, а, б), что способствует повышению прочности цементного камня [4].
Петрографический анализ цементного камня показывает, что закристаллизованность цементного камня с добавкой СС-3ТН выше (рис. 4, б), чем без добавки (рис. 4, а).
Кристаллы с добавкой более мелкие и лучше закристаллизованы, видны четкие очертания новообразований в массе цементного камня. Кроме того, исследование пористости цементного камня показывает, что поры состава с добавкой имеют правильную округлую форму и равномерно распределены в объеме.
Подсчет пористости (табл. 2) выполнен по методу окулярной сетки. Общая пористость с применением добавки снижена на 0,6 %, что свидетельствует об уплотнении цементного камня. Кроме того, изменился качественный состав пор: так, количество пор размером до 0,5•10-2 см увеличилось на 5 %, размером до 1,0•10-2 см тоже на 5 %. Результаты петрографических исследований подтверждаются прочностными данными цементного камня.
Поскольку технология монолитного бетонирования предусматривает послойное возведение сооружений с перерывами в бетонировании, представляет интерес исследование контактного шва старого и нового бетонов [4, 5].
а) б)
Рис. 5. Петрография контактного шва цементного камня: а) верхняя граница контакта; б) нижняя граница контакта
В настоящее время работы по обеспечению контактного шва между слоями бетона при непрерывном бетонировании более 3 суток выполнялись в основном полимерными композициями или коллоидными цементными клеями.
Основными факторами, по мнению Н.В. Михайлова, влияющими на сцепление старого и нового бетонов, являются условия образования и свойства кристаллического вещества контактной зоны. Исследования свойств контактной зоны проводились в «чистом виде», абстрагируясь от других факторов, которые могут существенно влиять на прочность сцепления, но не определяют физико-химические процессы, протекающие при сращивании бетонов [1, 5].
Для сопоставимости результатов экспериментов все операции со всеми составами цементных паст повторялись в одинаковой последовательности.
В.И. Соловьевым был предложен способ бесшовного возведения монолитных сооружений, позволяющий обеспечивать монолитность контактного шва [2]. При проведении опытов было обнаружено, что обработка поверхности твердеющего бетона различными солями приводит к постепенному растворению соли на его поверхности. Опыты были повторены в условиях, исключающих увлажнение солей за счет влажности воздуха, но результат был тот же самый – соль увлажнилась. Далее был определен срок твердения бетона, который приводил к увлажнению солей на его поверхности. Оказалось, что увлажнение идет на цементном камне, твердевшем не более 3 суток. Миграция влаги из цементного камня к растворяющейся соли освобождает приграничный с контактом слой и создает небольшое осмотическое давление внутри него, которое позволяет проникать в камень образовавшемуся раствору. Это сшивает приграничный слой с отвердевшей массой. Поверхностный слой карбоната кальция в этом случае уже не оказывает значительного влияния на образование новых сростков в отвердевшем цементном камне. Исследование осмотических свойств цементного камня позволило использовать это явление для склеивания старого цементного камня с новым.
Кроме отмеченного, было обнаружено, что, если в момент растворения соли оказывать вибрационное воздействие на поверхность цементного камня, находящегося в контакте с растворяемой солью, она разжижается, превращаясь в цементный гель. После прекращения вибрационного воздействия разжиженный слой затвердевал, как и обычный цементный камень. Полученный цементный камень не обнаруживает следов повторного его разрушения и не снижает прочность, в сравнении с контрольными образцами. Подобные операции можно было осуществлять с цементным камнем, твердевшем в естественных условиях.
По результатам проведенных опытов был разработан способ бетонирования монолитных сооружений, положенный в основу концепции бесшовного бетонирования. Опыты по бесшовному бетонированию проводились следующим образом: готовили цементную пасту с В/Ц 0,35. Затем закладывали ее в форму размером 10х10х10 см до половины объема, выдерживали ее 3 суток, после чего готовили такую же цементную суспензию, затем наносили на поверхность твердевшего в форме образца порошкообразный тиосульфат натрия и вибрировали ее микробулавой до образования на поверхности гелеобразной массы. После чего производили закладку второго слоя и уплотняли его обычным способом на вибростоле. Количество тиосульфата натрия было принято из расчета 0,5 г на 1 см2.
Из затвердевших образцов изготавливали образцы-шлифы и производили их фотографирование [2, 3, 5]. На рис. 5, а, б, показан контактный шов старого и нового цементного камня, бетонированного разработанным способом. Причем отдельно отсняты верхняя и нижняя его части.
Было установлено, что гидрат окиси кальция распределен как в объеме старого, так и в объеме нового цементного камня. Хорошо видно, что контактный шов не имеет четкой границы, как в контактных участках, так и внутри себя. Цементный камень выглядит как монолит и содержит в контактном слое некоторый избыток тиосульфата натрия, который значительно диспергирует его кристаллогидраты, что в свою очередь уплотняет и упрочняет его.
Анализ полученных результатов показывает, что разрушение цементного камня идет по образцу, а не по шву контактного слоя, что можно объяснить высокой прочностью контактного слоя старого и нового бетонов. Повышение В/Ц ведет как к некоторому снижению прочности контакта, так и к снижению прочности образцов при сжатии.