В настоящее время алюминий и его сплавы благодаря совокупности уникальных физико-химических и механических свойств (малая плотность (2,7 г/см3), податливость штамповке, хорошая тепло- и электропроводность, высокая коррозионная стойкость, стойкость к высоким и низким температурам и т.д.) заняли лидирующие позиции среди конструкционных материалов и имеют хорошие перспективы. Основные потребители алюминиевой продукции – транспортная, строительная, упаковочная, машиностроительная, авиакосмическая отрасли, автомобилестроение и энергетика. Алюминиевые заводы России работают на глиноземе, получаемом из традиционных бокситовых и частично нефелиновых руд. В Сибири расположены Братский, Красноярский, Иркутский, Саянский и Новокузнецкий алюминиевые заводы. Доля Иркутской области в производстве алюминия от общероссийского производства составляет 35 %, но в связи с тем, что весь глинозем привозной, она не имеет для обеспечения своих заводов собственных, подготовленных для освоения сырьевых баз [1].
Одним из возможных вариантов обеспечения потребностей алюминиевых заводов Восточной Сибири в глиноземе и его разумного экспорта является использование глиноземсодержащего сырья Республики Бурятия – Боксонских бокситов, нефелиновых руд Мухальского месторождения и огромных по запасам и уникальных по содержанию калия алюмосиликатных пород – сынныритов. Это позволило бы не завозить сырье с Урала и импортировать из-за границы, что значительно снизит стоимость выпускаемого первичного алюминия.
Материалы и методы исследования
Объектами данного исследования являлись бокситы центральной части Боксонского месторождения, нефелиновые руды Мухальского месторождения, алюмосиликатные породы – сынныриты, отобранные на Сыннырском (Республика Бурятия) и Сакунском (Забайкальский край) массивах нефелиновых сиенитов.
Рентгенофазовый анализ (РФА) исходных минералов проводили методом рентгеновской дифракции на дифрактометре D8 ADVANCE (Bruker AXS, Германия).
Химический состав исходных минералов определяли методом атомно-абсорбционной спектрометрии на спектрометре SOLAAR M6 (Thermo Electron, США) и фотоколориметрическим методом на спектрофотометре ПЭ–5300B.
Кристаллооптическим (минералографическим) методом устанавливался минеральный состав пробы бокситов и сынныритов.
Результаты исследования и их обсуждение
К традиционным глиноземным месторождениям относятся бокситовые руды. Ресурсный потенциал бокситов Сибири оценивается более, чем в 570 млн т, из которых балансовых запасов – 144,9 млн т, забалансовых – 143,3 млн т, прогнозных ресурсов категорий Р1, Р2 и Р3 – 291,0 млн т.
Наиболее крупные забалансовые запасы бокситов разведаны в Восточном Саяне в Республике Бурятия – 128,9 млн т низкосортных бокситов Боксонского месторождения, расположенного в 150–200 км от Транссибирской железнодорожной магистрали. На Боксонском месторождении распространен мелкий карст и преобладают раннепалеозойские осадочные бокситы, преимущественно лагунные. Рудное тело приурочено к карбонатной свите и представлено пластовой залежью, залегающей на неровной поверхности рифогенных, водорослевых или слоистых доломитов [2]. Среднее содержание Al2O3 – 41–43 %, максимальная мощность пласта 25–30 м. В последние годы перспективы месторождения расширяются с нахождением свалов бокситов в окрестностях Боксонского месторождения.
Минеральный состав бокситов представлен в табл. 1, в пробе руды преобладают бемит (23,79 % Al2O3), диаспор (12,35 % Al2O3). Наряду с глиноземсодержащими минералами бокситы содержат слюдистые минералы и продукты их выветривания.
Таблица 1
Минеральный состав красных бокситов
| 
 Минерал  | 
 Содержание, %  | 
 Минерал  | 
 Содержание, %  | 
 Минерал  | 
 Содержание, %  | 
| 
 Иллит  | 
 17,80  | 
 Пирофиллит  | 
 1,10  | 
 Халькопирит  | 
 0,037  | 
| 
 Алунит  | 
 0,38  | 
 Апатит  | 
 0,98  | 
 Гюбнерит  | 
 0,07  | 
| 
 Мелантерит  | 
 0,52  | 
 Диаспор  | 
 12,35  | 
 Пирит  | 
 0,65  | 
| 
 Пироксен  | 
 3,40  | 
 Бемит  | 
 23,79  | 
 Сфен  | 
 5,29  | 
| 
 Маргарит  | 
 1,50  | 
 Каолинит  | 
 8,04  | 
 Оксиды железа  | 
 20,80  | 
| 
 Монтмориллонит  | 
 1,10  | 
 Галенит  | 
 0,015  | 
 Сумма  | 
 100,00  | 
| 
 Хлорит  | 
 2,15  | 
 Сфалерит  | 
 0,03  | 
Большая часть слюдистого материала относится к слюде мусковитного типа – иллиту (17,8 %). В акцессорной зависимости к хлоритам в пробе присутствует титановый минерал – сфен (2,16 % TiO2). Красный цвет бокситу придает гематит (Fe2O3 20,80 %).
Красные бокситы Боксонского месторождения характеризуются как бемит-диаспоровые и, как видно из рис. 1, на рентгенограмме образца присутствуют линии основных составляющих руды – бемита и гематита.

Рис. 1. Рентгенограмма пробы боксита Боксонского месторождения
Для определения относительной плотности исходной руды использовали материал крупности 0,5 мм. Расчетная физическая величина относительной плотности бокситовой руды составила 2,55 г/см3. Силикатный модуль (соотношение Al2O3 / SiO2) равен 2,36.
По данным спектрального, химического составов (табл. 2, 3) и силикатному модулю пробы исследованного образца бокситов относятся к типичным высококремнистым железистым бокситам. Общее содержание серы в бокситах составляет 0,07 %.
Таблица 2
Спектральный состав красных бокситов
| 
 Химический элемент  | 
 Содержание, вес., %  | 
 Химический элемент  | 
 Содержание, вес., %  | 
 Химический элемент  | 
 Содержание, вес., %  | 
| 
 O  | 
 48,41  | 
 K  | 
 0,99  | 
 Fe  | 
 17,75  | 
| 
 Na  | 
 0,50  | 
 Cа  | 
 0,22  | 
 Ni  | 
 0,09  | 
| 
 Mg  | 
 0,33  | 
 Тi  | 
 1,09  | 
 Cu  | 
 1,27  | 
| 
 Al  | 
 19,78  | 
 Cr  | 
 0,17  | 
 Zn  | 
 1,13  | 
| 
 Si  | 
 8,08  | 
 Mn  | 
 0,20  | 
 Итого  | 
 100  | 
Таблица 3
Химический состав бокситов Боксонского месторождения
| 
 Содержание, мас. %  | 
||||||||||||
| 
 SiO2  | 
 TiO2  | 
 Al2O3  | 
 Fe2O3  | 
 FeO  | 
 MnO  | 
 MgO  | 
 CaO  | 
 Na2O  | 
 K2O  | 
 SO2  | 
 п.п.  | 
 сумма  | 
| 
 18,07  | 
 2,16  | 
 42,58  | 
 21,34  | 
 0,44  | 
 0,02  | 
 0,63  | 
 2,28  | 
 0,93  | 
 0,93  | 
 0,6  | 
 9,41  | 
 99,39  | 
Боксонские бокситы также подвергались технологическим исследованиям. Авторами работы [3] исследованы возможности механической активации низкокачественных бокситовых руд Боксонского месторождения для извлечения глинозема. Установлено, что эффективное кислотное вскрытие происходит в результате сочетания механической активации и кислотной обработки активированного продукта. Предложен двухстадийный метод разложения бокситов. В работе [4] исследована возможность выщелачивания гидроксида алюминия из боксита щелочными растворами.
Вторым по значению после бокситов видом алюминиевого сырья являются нефелиновые руды, при переработке которых можно получать не только глинозем, но и другие ценные продукты. В Республике Бурятия высокую промышленную ценность представляют разведанные запасы нефелиновых руд Мухальского месторождения. По химическому составу и технологическим свойствам уртиты (26–29 % Al2O3) и ийолит-уртиты (20–25 % Al2O3) соответствуют нефелиновым рудам Кия-Шалтырского месторождения, на котором работает Ачинский глиноземный завод в Красноярском крае, однако по запасам они превышают Кия-Шалтырское более чем в 3 раза. В целом по месторождению запасы, включая прогнозные, оцениваются в 882 млн т. Большие запасы, высокое качество руд и незначительная отдаленность от Озерного рудного узла создают благоприятные условия для создания в Забайкалье нового центра минерально-сырьевой базы глиноземной промышленности на основе разработки нефелиновых руд Мухальского месторождения и расположенных в 25 км западнее Нижне-Бурульзайского и других массивов нефелинсодержащих пород (Инолоктинский, Гулхенский и др.). Месторождение сложено уртитами и ийолит-уртитами. Вмещающими являются осадочные и интрузивные породы, скрытые под покровом неогеновых базальтов. Химический состав уртитов Мухальского месторождения следующий, вес. %: 26,8–29,1 А12O3; 37,3–41,8 SiO2; 0,7–3,4 Fe2O3; 1,4–2,7 FeO; 6,2–13,1 СаО; 7,9–13,2 Na2O; 2,8–5,5 К2O; 0,1–0,7 ТiO2; 0,1–5,8 п.п.п. Особенностью химического состава является относительно высокое содержание в них галлия 16–20 г/т. Также строительству Мухальского глиноземного комбината благоприятствует наличие в 12 км высококачественных флюсовых известняков Сириктинского месторождения [5]. Институтами ВАМИ и «Гипроникель» составлено ТЭО строительства глиноземного комбината по производству глинозема, кальцинированной соды, калий-фосфорных удобрений и цемента.
Перспективным нетрадиционным комплексным сырьем для развития алюминиевой отрасли, агропромышленного комплекса страны являются уникальные по содержанию калия (К2О 19–21 %) алюмосиликатные породы – сынныриты. Они были обнаружены в Сыннырском (Республика Бурятия) и Сакунском (Забайкальский край) массивах нефелиновых сиенитов в начале 1960-х гг. В Сыннырском массиве выделены три крупных участка – Калюмный, Трехглавый и Верхнеушмунский. Каждый из них можно рассматривать как самостоятельное месторождение. Ресурсные запасы на Калюмном участке оценены в 2150 млн т руды; на Трехглавом – 300 млн т руды; на Верхнеушмунском – 150 млн т руды. Главными породообразующими минералами сынныритов являются калиевый полевой шпат (50–65 %) и природная калиевая разновидность нефелина – кальсилит (20–34 %), который довольно часто встречается в вулканических и интрузивных щелочных породах, но нигде, за исключением Сыннырского и Сакунского массивов, не образует значительных скоплений [6]. По данным проведенного рентгенофазового анализа (рис. 2) основными минеральными фазами сыннырита являются микроклин (K2Al2Si6O16), ортоклаз (K2Al2Si6O16) и кальсилит (K2Al2Si2O8). По данным химического анализа исследуемой пробы сыннырита из Калюмного участка основными химическими составляющими являются, в %: SiO2 – 51,86; Al2O3 – 22,50; K2O – 19,16; содержание других компонентов небольшое (Fe2O3 – 2,60; P2O5 – 1,92; Na2O – 1,00; CaO – 0,14; MgO – 0,11; TiO2 – 0,09).

Рис. 2. Рентгенограмма пробы сыннырита Калюмного месторождения
Многолетние агрохимические испытания дробленого сыннырита показали, что последний действует как бесхлорное калийное удобрение [7–8]. Однако перевозка его для агротехнических целей неэкономична из-за низкой доли активного компонента (6,25 %) в сырье. В связи с этим возникает необходимость в проведении исследований по повышению качества этих удобрений за счет увеличения количества усвояемого калия. В зарубежных изданиях встречаются работы, где в качестве бесхлорных калийсодержащих удобрений используются калиевые полевые шпаты, спеченные с соединениями кальция (фосфаты, сульфаты, карбонаты и оксид кальция). Результаты агрохимических исследований полученных смесей удобрений показали низкую эффективность из-за невысоких значений водо- и лимоннорастворимого калия [9].
Авторами разработаны физико-химические основы экологически чистых технологий получения калийсодержащих удобрений из сынныритов [10]. Первая технология основана на совместной механохимической активации сынныритов и окисленных бурых углей, а вторая – на получении (синтезе) искусственного лейцит-кальсилитового концентрата термохимическим обогащением с использованием в качестве добавки доломита (CaMg(CO3)2). В синтезированном концентрате доля лимоннорастворимой усваиваемой растениями формы калия выросла до 89 %. Измельченный сыннырит, искусственные кальсилит-лейцитовые концентраты, органоминеральное удобрение на основе сыннырита и окисленного бурого угля – это экологически чистые удобрения и агромелиоранты, обладающие пролонгированным действием и решают общие для сельского хозяйства проблемы – дефицит бесхлорных калийсодержащих удобрений и негативное воздействие на экологию, что имеет большое значение для условий Байкальского региона. Также минеральный состав сынныритов позволяет при их глубокой комплексной переработке получать чистые соли калия, глинозем и аморфный кремнезем.
Выводы
Таким образом, на сегодняшний день из алюминийсодержащих руд Бурятии только нефелиновые руды Мухальского месторождения и ультракалиевые алюмосиликатные породы Сыннырского массива могут рассматриваться как сырьевая база глиноземной промышленности России. Минеральный состав данных руд позволяет при их комплексной переработке организовать безотходное производство с извлечением всех ценных компонентов в товарные продукты (глинозем, содопродукты, калийсодержащие удобрения и цемент). Боксонские бокситы из-за низкого качества и небольших запасов нельзя считать объектом для эксплуатации.

