Scientific journal
International Journal of Applied and fundamental research
ISSN 1996-3955
ИФ РИНЦ = 0,593

RESOLUTION OF D`ALEMBERT`S PARADOX ON THE BASIS OF KMT AND OF SUMMATION OF VELOCITIES

Kudryashova N.A. 1
1 Ural Federal University
The article describes a new method for calculating the forces acting on a solid body in a gas stream that is close in its properties to the ideal gas. The gas flow is a collection of individual particles. These particles make a chaotic thermal motion and at the same time participate in the directional motion of the flow. The speed of each molecule is represented as the geometric sum of its instantaneous rate of thermal motion in a stationary volume of gas and the flow rate. The equation for calculating the pressure of an ideal gas flow on a surface element is obtained on the basis of total velocities and equations of the kinetic molecular theory. The calculation results coincide with the experimental data in qualitative terms. The dependence of gas pressure on the direction of the flow velocity with respect to the surface is obtained. This dependence explains one of the causes of the D’Alembert’s paradox: for equal time intervals, more particles approach the frontal part of the body than the aft surface. The force of action of each particle on the frontal surface is greater than the force of action of the particle on the aft surface. Classical aerodynamic models consider gas as a continuous medium and do not take into account the ratio of the velocities of thermal and directional motion of molecules.
ideal gas flow
dynamic pressure
drag

В современных науках существуют противоречия различных видов, так называемые парадоксы. Наличие парадокса в какой-либо теории свидетельствует о ее несовершенстве и побуждает исследователей вновь рассматривать все аспекты теоретического построения. Стремление разрешить парадокс и объяснить причины возникновения противоречия способствует совершенствованию научного знания.

Значительное число парадоксов до настоящего времени существует в аэрогидродинамике [1]. Исторически первым был обнаружен парадокс Даламбера – Эйлера, согласно которому при равномерном прямолинейном движении тела внутри несжимаемой и невязкой среды (жидкости или газа) рассчитанная сила сопротивления равна нулю. Этот парадокс проявляется и при стационарном безотрывном обтекании тела идеальной жидкостью (газом). В действительности тело всегда испытывает сопротивление движению со стороны окружающей его среды. Классическое объяснение возникновения парадокса Даламбера – Эйлера: реальные жидкости и газы обладают вязкостью, при движении тел в сплошной среде образуются вихри и поверхности разрыва скорости, то есть парадокс возник в силу переупрощенности модели [1]. Парадоксу Даламбера – Эйлера более 250 лет, но исследование причин его возникновения и условий существования продолжается [2–4].

Цель исследования: расчет давления потока разреженного газа, близкого по своим свойствам к идеальному, на элемент поверхности твердого тела. В работе рассматривается зависимость давления потока от следующих параметров: скорость потока, направление потока по отношению к поверхности, среднеквадратичная скорость теплового хаотического движения молекул газа в неподвижном объеме.

Метод и условия расчета

Действие газа на поверхность твердого тела является следствием множественных столкновений его молекул с поверхностью. Основное уравнение МКТ [5] позволяет рассчитать в рамках классической молекулярной физики давление молекул неподвижного (относительно некоторой поверхности) объема идеального газа на элемент этой поверхности. Движение молекул в газовом потоке отличается от движения молекул в неподвижном объеме газа тем, что кроме теплового хаотического движения молекулы участвуют в направленном перемещении потока в целом. В каждый момент времени тепловые скорости молекул, перемещающихся в направлении движения потока, превышают скорости молекул, направленные против потока. В результате этого перераспределения величин скоростей молекул (по сравнению с неподвижным объемом газа) и существует направленное движение потока.

В данной работе предлагается расчет давления газового потока на элемент поверхности твердого тела при следующих условиях и упрощениях:

1. Газ является идеальным, не имеет вязкости. Скорость потока невелика, плотность газа во всех его локальных объемах одинакова.

2. Столкновения молекул с поверхностью тела происходят абсолютно упруго, поверхность тела абсолютно гладкая, атомно-молекулярное строение тела не учитывается.

3. В системе отсчета, связанной с объемом газа, направления теплового хаотического движения молекул газа равновероятны, по величине скорости хаотического движения молекул одинаковы и равны некоторой скорости υо, усредненной по большому числу молекул.

4. В локальном объеме возле элемента поверхности газовый поток – плоский, безвихревой, стационарный.

Скорость молекулы газа в неподвижном объеме и в потоке

Рассмотрим неподвижные в системе отсчета XYZ элемент поверхности тела ΔS и прилегающий объем газа. Молекулы газа перемещаются хаотически, но часть молекул движется в направлении рассматриваемого элемента поверхности (рис. 1, а). За некоторое время Δt к элементу поверхности приблизятся молекулы, находящиеся в пределах полусферы с радиусом r = υо∆t, где υо – скорость молекул в тепловом движении.

kudr1a.tif kudr1b.tif

а) б)

Рис. 1. Молекулы, движущиеся к элементу поверхности ∆S из неподвижного прилегающего объема газа (а) и газового потока (б)

В потоке газа молекулы двигаются и хаотически, и направленно (рис. 1, б). В этом случае поверхности ΔS за время Δt достигнут молекулы, движущиеся к ней из объема другой формы и размеров, так как вектор скорости каждой молекулы изменился в соответствии с вектором скорости направленного движения. Если поток газа движется со скоростью υ, то в некоторый момент времени вектор скорости каждой молекулы υƩi в соответствии с теоремой о сложении скоростей можно представить как геометрическую сумму вектора скорости этой молекулы в хаотическом движении υоi и скорости направленного движения υ.

На рис. 2 молекула газа находится в точке A. Элемент поверхности ∆S лежит в плоскости XOZ. Вектор суммарной скорости молекулы υƩi направлен к этому элементу. Скорость направленного движения потока газа υ находится на отрезке AD в плоскости, расположенной параллельно координатной плоскости XOY. Направление движения потока газа характеризуется величиной угла α (между вектором υ и перпендикуляром AB к плоскости, в которой лежит элемент поверхности). Угол β – угол между вектором скорости потока и вектором суммарной скорости молекулы υƩi. Углы θ и φ характеризуют направление суммарной скорости. В данной работе принято, что модули скоростей хаотического движения молекул в неподвижном объеме газа одинаковы и равны некоторой усредненной по всем молекулам величине υо, следовательно, суммарные скорости молекул, движущихся в одном направлении, также одинаковы υƩi = υƩ(θ, φ).

kudr2.tif

Рис. 2. Скорость молекулы газа в тепловом хаотическом движении – υоi, скорость направленного движения потока газа – υ, суммарная скорость молекулы – υƩi

Из геометрических соотношений (рис. 2):

kudr01.wmf (1)

Суммарная скорость:

kudr02.wmf

Если принять kudr03.wmf, то

kudr04.wmf. (2)

Число молекул, движущихся к элементу поверхности

В неподвижном объеме газа, в силу равновероятности движения молекул в любом направлении, векторы скоростей молекул будут равномерно распределены внутри полного телесного угла, равного 4π (соответствующего сфере). В пределах элемента телесного угла dω находится dN векторов скоростей. Плотность распределения скоростей молекул по направлениям в этом случае можно рассчитать как dN/dω = N/4π, где N – число молекул в рассматриваемом неподвижном объеме газа [5]. В газовом потоке плотность распределения скоростей молекул по направлениям зависит от скорости движения потока. Строгий анализ такого распределения требует отдельного исследования и выходит за рамки данной работы. При небольших скоростях потока можно принять, что плотность распределения скоростей молекул по направлениям не зависит от скорости направленного движения и равна N/4π.

Рассмотрим косой цилиндр, основание которого ΔS лежит в плоскости XOZ (рис. 2). Образующая цилиндра параллельна OA и равна r. В этом косом цилиндре молекулы двигаются в различных направлениях. Так как принято, что плотность распределения скоростей молекул по направлениям не зависит от скорости потока, то число частиц, движущихся к основанию цилиндра в потоке газа, можно считать равным числу частиц, движущихся к этому основанию из неподвижного объема [5]:

kudr05.wmf

где n – концентрация молекул газа.

За время Δt основания цилиндра (рис. 2) достигнут молекулы, находящиеся на расстоянии kudr06.wmf.

Таким образом, к элементу площади ΔS за время Δt в направлении, соответствующем углам θ и φ, приблизится следующее число молекул:

kudr07.wmf (3)

Давление потока газа на элемент поверхности

Изменение импульса молекулы массы m при абсолютно упругом столкновении с элементом поверхности (рис. 2): kudr08.wmf.

Изменение импульса для всех молекул из числа dNθ,φ (3) составит

kudr09.wmf

На элемент поверхности ΔS за время Δt воздействуют молекулы, движущиеся из различных точек всего прилегающего к поверхности объема. Всем возможным направлениям движения молекул к элементу соответствуют изменения угла θ от нуля до π/2, а угла φ – от нуля до 2π (рис. 2). Изменение импульса всех молекул, взаимодействующих с элементом ΔS за время Δt:

kudr10.wmf (4)

На основании изменения импульса (4) сила, действующая на элемент поверхности, рассчитывается как F = ∆K/∆t.

Давление на элемент поверхности:

kudr11.wmf (5)

где m – масса молекулы, ρ = nm – плотность газа, υƩ(θ, φ) – суммарная скорость молекул, движущихся в направлении, которому соответствуют углы θ и φ (2).

Таким образом, давление потока идеального газа на элемент поверхности рассчитывается:

kudr12.wmf (6)

где угол β – угол между вектором скорости потока и вектором суммарной скорости молекул (рис. 2). Этот угол зависит как от направления движения молекул по отношению к поверхности (определяется углами θ и φ), так и от направления движения потока (угол α). Соотношение между тригонометрическими параметрами углов приведено в (1).

Статическое давление идеального газа – это давление молекул газа на элемент поверхности из неподвижного относительно поверхности прилегающего объема. Если прилегающий к поверхности объем перемещается относительно нее, то давление газа будет отличаться от статического. В зависимости от направления и величины скорости движения потока это давление может быть как больше, так и меньше статического. Давление потока идеального газа на элемент поверхности тела можно назвать кинетическим давлением. (Правильнее был бы термин «динамическое давление», но в последнем случае традиционно подразумевается кинетическая энергия направленного движения единицы объема газа или жидкости.)

Если υо – среднеквадратичная скорость хаотического движения молекул идеального газа в неподвижном его объеме, то статическое давление рассчитывается: po = ρυo2/3 [5]. Тогда отношение кинетического давления (5, 6) к статическому (относительное давление):

kudr13.wmf (7)

Относительное давление потока идеального газа η (7) рассчитано для различных по направлению и величине скоростей потока. Результаты расчета приведены на рис. 3. Если направленного движения газа нет, то отношение ψ (скорости потока к среднеквадратичной скорости молекул) равно нулю, а относительное давление потока (7) равно единице. Если поток направлен к поверхности и α = 0 (рис. 2), то относительное давление потока имеет максимальное (для данного отношения ψ) значение. В случае α = 180 ° (поток движется от поверхности) значение η минимально. Если скорость потока параллельна поверхности (α = 90 °), то увеличение скорости потока приводит к уменьшению его давления. Полученные результаты согласуются с широко известными экспериментальными данными.

Приведенный в данной работе метод расчета давления потока газа раскрывает механизм возникновения сил сопротивления при ламинарном обтекании тела, симметричного относительно его миделева сечения, даже в среде, лишенной вязкости. Для молекул, в данный момент времени движущихся к лобовой поверхности тела, геометрическая сумма их скоростей в тепловом хаотическом движении и вектора скорости направленного движения потока превышает усредненную тепловую скорость частиц. К кормовой стороне тела частицы двигаются (в среднем) со скоростью, которая меньше тепловой, так как движение к поверхности происходит за счет тепловой составляющей, а вектор скорости потока направлен «от поверхности». Таким образом, за одно и то же время к лобовой части тела приближается большее число частиц, нежели к кормовой части, и они оказывают в каждом столкновении большее силовое воздействие. Это различие числа и силы столкновений молекул газа с разными частями поверхности тела порождает разность давлений на лобовую и кормовую поверхности, то есть силу лобового сопротивления.

kudr3.wmf

Рис. 3. Зависимость относительного давления потока (7) от угла α (между вектором скорости потока и нормалью к элементу поверхности) при различных относительных скоростях потока

Выводы

1. Метод расчета давления потока идеального газа на элемент поверхности тела, в соответствии с которым вектор скорости молекулы рассматривается как геометрическая сумма вектора тепловой скорости этой молекулы и вектора направленного движения потока, обеспечивает результаты в качественном отношении коррелирующие с экспериментальными данными для реальных газов.

2. Метод позволяет раскрыть механизм возникновения повышенного давления на лобовую поверхность обтекаемого тела (пониженного – на кормовую поверхность) в потоке газа, не обладающего вязкостью, и выявить одну из причин возникновения парадокса Даламбера – Эйлера: молекулы потока приближаются к лобовой части тела с большими (в среднем) скоростями, нежели к кормовой части. Классические аэродинамические модели рассматривают газ как сплошную среду и принимают во внимание только скорость ее направленного движения.

3. Положительными характеристиками предлагаемого метода расчета являются: обоснованность с позиций классической молекулярной физики, относительная простота, возможность использования в совокупности с известными расчетными комплексами [6, 7].