Scientific journal
International Journal of Applied and fundamental research
ISSN 1996-3955
ИФ РИНЦ = 0,593

ON THE POSSIBLE FORMATION OF NATURAL GAS HYDRATES IN THE CONDITIONS OF THE LENA-TUNGUSKA PETROLEUM PROVINCE DEPOSITS

Kalacheva L.P. 1 Rozhin I.I. 1
1 Institute of Oil and Gas Problems SB RAS – a separate subdivision of the Federal Research Center «Yakut Scientific Center SB RAS»
The paper considers the possibility of hydrate formation in the fields of the Lena-Tunguska petroleum province of Eastern Siberia. The equilibrium hydrate formation conditions in reservoir were calculated by the Sloan method using the equation of state of the Redlich-Kwong gas based on the blend composition of the gas. It has been shown that in almost all fields, with the exception of some wells with deeper perforation intervals of the Bysakhtakh gas condensate field, hydrate formation is possible whether in productive strata or in the bottom hole zone and well bores. Indirect geochemical markers of the presence of hydrates are also highly mineralized stratum water and the presence of helium in natural gas. Under reservoir conditions, hydrates of the KS-II structure are formed in the examined fields with filling of small and large cavities. The composition of hydrates is dominated by hydrocarbons C2-C4, which leads to an increase in the density of hydrates relative to the density of hexagonal ice. The predicted presence in the productive horizons and the formation of hydrates during the development and operation of the Lena-Tunguska oil and gas fields necessitates research aimed at compiling technological workflows taking into account the individual geological and production data and the physicochemical properties of the formation fluids. Since at present the main method of preventing and eliminating hydrates is the injection of methanol into the formation, into the bottomhole zone and well bores, it is also necessary to search for cost-effective ways to reduce operating costs for the prevention of technogenic hydrate formation.
Lena-Tunguska oil and gas province
natural gas
hydrate formation
equilibrium hydrate formation conditions
composition and properties of natural gas hydrates

В настоящее время Республика Саха (Якутия) является одним из субъектов Российской Федерации, которые участвуют в экспорте углеводородного сырья в страны Азиатско-Тихоокеанского региона (АТР) [1]. На территории республики открыто более 30 месторождений нефти и газа, которые находятся в пределах Лено-Тунгусской и Лено-Вилюйской нефтегазоносных провинций востока Сибирской платформы. Непско-Ботуобинская нефтегазоносная область Лено-Тунгусской нефтегазоносной провинции (ЛТ НГП) является самой богатой по разведанным и прогнозным запасам углеводородов. К ней приурочено более 25 % всех начальных геологических суммарных ресурсов углеводородов провинции [2]. Природные газы месторождений ЛТ НГП характеризуются высоким содержанием этана, наличием гелия и практически полным отсутствием соединений серы. Эти обстоятельства обуславливают привлекательность разработки и эксплуатации этих месторождений с точки зрения высокой рентабельности и экологической чистоты газохимического производства [1]. Однако главной особенностью инженерно-геологических условий месторождений ЛТ НГП является повсеместное развитие многолетнемерзлых пород, залегающих до глубины 400–600 м. Известно, что при проходке скважинами и подземными выработками интервала криолитозоны возникают внезапные выбросы газов, которые некоторые исследователи связывают с крупными по объему газовыми скоплениями в многолетнемерзлых породах в свободной или гидратной формах [3–5]. Сложные геокриологические условия и гидратонасыщенность криолитозоны свидетельствуют о возможности возникновения различных осложнений – вплоть до серьезных аварийных ситуаций – на всех стадиях освоения месторождений в северных регионах [6, 7].

Месторождения нефти и газа ЛТ НГП характеризуются низкими пластовыми температурами при начальных пластовых давлениях 10–19 МПа [8]. Пластовые воды имеют высокую минерализацию (до 400 г/л) и относятся к хлоридно-кальциевому генетическому типу [9]. Термобарические условия на этих месторождениях соответствуют равновесным условиям образования гидратов, однако высокая минерализация остаточной поровой влаги практически препятствует гидратообразованию в коллекторах пласта. Тем не менее не исключается наличие гидратов в коллекторах продуктивных горизонтов нефтегазоносных провинций Восточной Сибири [10], поскольку высокая минерализация пластовых вод и наличие гелия в составе природного газа являются косвенными геохимическими маркерами выявления газогидратов в зоне возможного гидратообразования (ЗВГО) [11].

Целью работы являлось термодинамическое обоснование существования гидратов в продуктивных горизонтах Лено-Тунгусской НГП и техногенного гидратообразования при эксплуатации месторождений.

Материалы и методы исследования

Термобарические условия гидратообразования природных газов месторождений Лено-Тунгусской НГП (табл. 1) были рассчитаны на основании компонентного состава газа по методике Слоана, где используется уравнение состояния газа Редлиха – Квонга [12, 13].

Таблица 1

Месторождения Лено-Тунгусской НГП

Месторождение

Пластовые условия

температура, °С

давление, атм

Кедергинское ГМ

11–12

95–96

Верхневилючанское НГМ

4–19

161–184

Озерное ГМ

12–13

133–135

Северо-Нелбинское ГКМ

10–11

133–150

Буягинское ГКМ

8–9

171–172

Бысахтахское ГКМ

17–30

308–314

Верхнечонское НГКМ

14–15

136–137

Иреляхское ГНМ

10–11

161–162

Талаканское ГНМ

12–13

116–126

Таранское ГНМ

11–12

110–111

Центрально-Талаканское ГНМ

11–13

97–102

Вилюйско-Джербинское НГМ

5–20

160–175

Ихтекское НГКМ

5–7

154–156

Маччобинское НГМ

10–13

155–163

Нелбинское НГМ

10

146–147

Таас-Юряхское НГКМ

8–14

141–144

Ботуобинское НГКМ

12–13

158–159

Нижнехамакинское НГКМ

13–17

119–129

Среднеботуобинское НГКМ

10–11

141–148

Чаяндинское НГКМ

7–10

131–135

Расчеты показали, что, кроме отдельных скважин Бысахтахского ГКМ с более глубоким интервалом перфорации, гидратообразование возможно на каждом из месторождений.

Расчет равновесных условий гидратообразования в пластовых условиях рассмотрен на примере природных газов Среднеботуобинского и Бысахтахского месторождений, отличающихся по условиям залегания и компонентному составу газа.

Среднеботуобинское НГКМ приурочено к Среднеботуобинской и Курунгской структурам северо-восточного склона Непско-Ботуобинской антеклизы. Промышленная нефтегазоносность месторождения связана с карбонатными отложениями осинского и терригенными коллекторами ботуобинского и улаханского горизонтов. Газонефтяная залежь осинского горизонта приурочена к кавернозно-пористым доломитам и известнякам, залегающим в кровле подсолевого комплекса под мощной толщей каменных солей юрегинской свиты нижнего кембрия. Глубина залегания залежи варьируется в пределах 1450–1550 м. Пластовое давление в залежи ниже гидростатического и составляет 13,9–15,8 МПа, пластовая температура равна 8 °С. Основная нефтегазовая залежь приурочена к преимущественно кварцевым песчаникам ботуобинского горизонта. Глубина залегания этой залежи 1875–1925 м. Пластовое давление в залежи составляет 14–14,4 МПа, что ниже условного гидростатического, пластовая температура 12–14 °С [8].

Бысахтахское ГКМ расположено в зоне сочленения Березовской впадины с Джеюктинским выступом и приурочено к одноимённой положительной структуре северо-восточного простирания. Выделяются четыре продуктивных горизонта: бысахтахский, кудулахский и успунский в вендской части разреза и юряхский – в венд-нижнекембрийской части разреза. На Бысахтахском месторождении в зависимости от скважины пластовые температуры изменяются в интервале от 17 до 30 °С; а давления – от 166 до 315 атм [2].

Результаты исследования и их обсуждение

Расчет равновесных условий гидратообразования природного газа Среднеботуобинского месторождения (рис. 1) показывает, что пластовые условия находятся глубоко в гидратной области.

На Бысахтахском месторождении образование гидратов возможно только в отдельных скважинах, для которых пластовые температуры и давления лежат в области гидратообразования (рис. 2). В скважинах, которые характеризуются высокими пластовыми температурами и давлениями, гидратообразование исключается (рис. 3).

Сравнение равновесных условий гидратообразования показывает, что природный газ Бысахтахского ГКМ (рис. 2, 3) месторождения образует гидраты при более высоком давлении по сравнению с природным газом Среднеботуобинского НГКМ (рис. 1).

Природные газы месторождений, независимо от компонентного состава, образуют гидраты кубической структуры II с заполнением молекулами газа, как малых, так и больших полостей кристаллической решетки (табл. 2). В составе гидратов из компонентов природного газа преимущественно концентрируются углеводороды С2-С4.

kal1.tif

Рис. 1. Равновесные условия гидратообразования для пластового газа Среднеботуобинского месторождения (1991 г., скважина № 160, интервал 1889–1899). Точка пересечения штриховых линий соответствует пластовому условию. Компонентный состав газа ( % мол.): СН4 – 85,15; С2Н6 – 7,41; С3Н8 – 2,40; н-С4Н10 – 0,74; изо-С4Н10 – 0,29; С5+ – 0,93; СО2 – 0,05; N2 – 2,61; Н2 – 0,14; Не – 0,28

Степень заполнения малых полостей θ1 не достигает максимального значения, так как часть полостей остается свободной. Высокое равновесное давление гидратообразования способствует более полному заполнению малых полостей в гидрате природного газа Бысахтахского месторождения по сравнению с гидратом природного газа Среднеботуобинского месторождения. Большие полости гидратов заполняются крупными молекулами гидратообразователей, поэтому степени заполнения θ2 обоих гидратов близки к единице. Гидратные числа, рассчитанные по степеням заполнения полостей, показывают, что состав гидрата Бысахтахского месторождения близок к стехиометрическому. Плотность гидратов природного газа Среднеботуобинского месторождения больше плотности гидратов природного газа Бысахтахского ГКМ и превышают плотность гексагонального льда (0,912 г/см3). Поскольку газовые гидраты цементируют породы и увеличивают их механическую прочность, изменяют их фильтрационные свойства и могут повлиять на бурение скважин на месторождениях [11, 14].

kal2.tif

Рис. 2. Равновесные условия гидратообразования для пластового газа Бысахтахского месторождения (скважина № 187-02, интервал 1886–1896). Сплошная линия соответствует равновесным условиям гидратообразования. Точка пересечения штриховых линий соответствует пластовому условию. Компонентный состав пластового газа ( % мол.): СН4 – 90,423; С2Н6 – 5,580; С3Н8 – 1,484; н-С4Н10 – 0,409; изо-С4Н10 – 0,173; С5+ – 0,774; СО2 – 0,180; N2 – 0,879; Н2 – 0,069; Не – 0,079

kal3.tif

Рис. 3. Равновесные условия гидратообразования для пластового газа Бысахтахского месторождения (скважина № 187-02, интервал 2620–2905). Сплошная линия соответствует равновесным условиям гидратообразования. Точка пересечения штриховых линий соответствует пластовому условию. Компонентный состав пластового газа ( % мол.): СН4 – 90,10; С2Н6 – 4,52; С3Н8 – 0,92; н-С4Н10 – 0,19; изо-С4Н10 – 0,09; С5+ – 1,41; СО2 – 0,87; N2 – 1,74; Н2 – 0,05; Не – 0,06

Таблица 2

Состав и свойства гидратов природных газов

Компонент

Среднеботуобинское НГКМ

Бысахтахское ГКМ

Содержание компонентов в гидрате, % мол.

гидрат

гидрат

Метан

63,41

74,40

Этан

4,61

6,03

Пропан

26,30

16,51

Изобутан

4,51

1,98

н-бутан

1,15

0,47

Диоксид углерода

0,02

0

Азот

0

0,32

Молярная масса, г/моль

26,40

22,49

Степень заполнения полостей

малых θ1

0,7619

0,9096

больших θ2

0,9946

0,9934

Гидратное число n

6,75

6,04

Плотность гидратов, г/см3

0,939

0,931

 

Заключение

Низкие пластовые температуры месторождений Лено-Тунгусской НГП способствуют переходу углеводородов в гидратное состояние в продуктивных горизонтах. Наличие гидратов косвенно подтверждается высокой минерализацией пластовых вод и наличием гелия в природном газе. На месторождениях также возможно техногенное гидратообразование в призабойной зоне пласта и в стволах скважин. Основным методом борьбы с техногенным гидратообразованием до сих пор остается закачка термодинамических ингибиторов в скважины и призабойную зону пласта [9].

В связи с этим при разработке и эксплуатации каждого месторождения Лено-Тунгусской НГП необходимы исследования, направленные на составление технологических схем с учетом индивидуальных геолого-промысловых данных и физико-химических свойств пластовых флюидов, а также на поиск экономически эффективных путей сокращения эксплуатационных затрат по предупреждению техногенного гидратообразования.

Работа выполнена в рамках госзаказа Министерства науки и высшего образования РФ № 0377-2018-0002.