Scientific journal
International Journal of Applied and fundamental research
ISSN 1996-3955
ИФ РИНЦ = 0,593

MODELING OF THE OPTICAL SYSTEM OPERATING WITH INCOHERENT LIGHT

Ismanov Yu.Kh. 1 Tynyshova T.D. 1 Abdulaev A.A. 1
1 Kyrgyz State University of Construction
The paper considers a mathematical model of an incoherent optical system into which defocus type aberration is introduced. When entering data into a computer, it is necessary to use methods that can significantly reduce their total volume. In this case, the method should allow not to lose an important part of the information during the reduction, but also realize the ability to restore the entire initial amount of information carried by interferograms. It is proposed to use defocusing as such a method. Aberration like defocusing allows you to exclude the high-frequency component from the interferogram, to simplify it as much as possible, that is, ultimately, significantly reduce the amount of information entered into the computer. However, in the case of image processing, such as interferograms, that is, having a complex structure, it is rather difficult to identify defining characteristic points. The degree of defocus is selected in each case individually, depending on the characteristics of the high-frequency component of a complex interference pattern. In incoherent illumination of an optical device used together with a holographic correlator, it is possible to realize the desired image defocusing value. The results of computer simulation of the considered optical system are presented. Interferograms were obtained, from which it is seen that with the correct choice of the defocusing coefficient, a clear separation of moiré, the low-frequency component of the complex interference pattern, occurs.
optical system
defocusing
aberration
interferogram
holographic interferometer

Задача изучения сложных фазовых объектов, особенно динамического типа, чаще всего сводится к необходимости сбора данных об изменениях оптической неоднородности во времени в этих средах. Более того, если мы говорим об интерферометрических исследованиях, это должна быть довольно подробная интерферометрическая база данных, то есть запись интерферограмм объекта или среды, снятых в разные последовательные моменты времени и при разных значениях чувствительности интерферометра [1–3]. Чтобы более точно судить о временных изменениях, происходящих в исследуемой фазовой среде, необходимо делать похожие снимки с довольно короткими временными интервалами [4]. Однако при обработке всей этой информации, особенно если необходимо сравнить интерферограммы исследуемой фазовой среды, полученные в разные моменты времени, приходится иметь дело с огромным количеством данных [5–7]. При вводе данных в компьютер необходимо использовать методы, позволяющие значительно уменьшить их общий объем [8]. В этом случае способ должен позволить не потерять важную часть информации во время сокращения, а также реализовать способность восстанавливать весь первоначальный объем информации, переносимой интерферограммами. В качестве такого метода предлагается использовать расфокусировку. Аберрация типа расфокусировки позволяет исключить высокочастотный компонент из интерферограммы, максимально упростить его, то есть, в конечном итоге, значительно уменьшить объем информации, вводимой в компьютер. Однако в случае обработки изображений, таких как интерферограммы, то есть имеющих сложную структуру, довольно сложно идентифицировать определяющие характерные точки. Построение сложных стилизованных изображений из простейших «информативных фрагментов» [9], которые являются наиболее характерными особенностями данного изображения, является вариантом решения проблемы, рассмотренной выше. Расфокусировка изображений оптическими методами позволяет выделить эти «информативные фрагменты», которые в дальнейшем распознаются голографическим коррелятором. С выхода голографического коррелятора информация поступает на компьютер. Компьютер синтезирует исходное изображение с использованием информативных фрагментов [10–11]. Теоретически и экспериментально было показано, что дефокусировка сопровождается выделением информативных элементов с инверсией контраста только в оптических системах, использующих некогерентное освещение. Степень расфокусировки подбирается в каждом случае индивидуально, в зависимости от характеристик высокочастотной составляющей сложной интерференционной картины. При некогерентном освещении оптического устройства, используемого вместе с голографическим коррелятором, возможна реализация нужного значения расфокусированности изображения.

Целью данного исследования является разработка математической модели некогерентной оптической системы, которая позволила бы осуществить предварительную, низкочастотную фильтрацию сложных интерферограмм в системах их автоматической обработки и дешифровки.

Функция передачи оптического устройства, реализующего степень расфокусированности исследуемого изображения

Образование изображения с заданным значением расфокусированности происходит при прохождении некогерентного излучения сквозь оптическое устройство, включенное в схему коррелятора. Схема такого оптического устройства, сквозь которое проходит некогерентное излучение, показана на рис. 1.

isman1.tif

Рис. 1. Схема расфокусирующего оптического устройства: d1 и d2 – расстояния от объекта до линзы, и от линзы до изображения соответственно. L – линза

Условие использования некогерентного светового излучения предполагает, что оптическое устройство нелинейно по отношению к интенсивности излучения. В этом случае преобразование световой интенсивности можно записать в следующем виде, т.е. как преобразование свертки [12]:

isman01.wmf (1)

Здесь Ik аппроксимация геометрической оптики для интенсивности идеального изображения; h – импульсная характеристика, то есть амплитуда в плоскости изображения для точки, имеющей координаты (x2, y2), когда она подвергается воздействию точечного источника, который расположен в точке (x1, y1); g – действительная константа; I2 – интенсивность изображения в точке с координатами (x2, y2).

Как показывает частотный анализ этих оптических систем, в них реализовано линейное преобразование для значений интенсивности светового поля. Учитывая этот факт, можно ввести частотные спектры распределения значений Ik и I2, которые нормированы относительно идеального спектра, и значения которых задаются соотношениями [13]:

isman02.wmf (2)

isman03.wmf (3)

Здесь ξ, η значения координат в области частот. Аналогично функция передачи оптического устройства может быть нормализована:

isman04.wmf (4)

Если мы применим теорему о свертке к выражению (1), то получим соотношение:

isman05.wmf. (5)

Функция Ω(ξ, η) является передаточной функцией оптической системы. Ω(ξ, η) – фактически это весовой коэффициент сложного типа для частотной переменной в точке (ξ, η), который вводится оптической системой и который присваивается весовому коэффициенту переменной, имеющей нулевую частоту. Для известной оптической когерентной передаточной функции системы G(ξ, η) можно рассчитать оптическую передаточную функцию, используя следующую формулу:

isman06.wmf (6)

Здесь isman07.wmf изображение Фурье функции отклика.

После изменения переменных isman08.wmf у нас получается выражение:

isman09.wmf (7)

В случае когерентной системы isman10.wmf [14]. Здесь Z(x, y) функция отверстия; λ – усредненное значение длины волны; d2 – это удаление объектива от изображения.

isman11.wmf (8)

здесь вместо функции Z2 подставляем Z. Принимаем во внимание, что Z имеет значения 1 или, вне изображения, 0.

Рассмотрим оптическую систему при наличии аберрации. Если мы рассмотрим погрешности фазы в точке с координатами (x, y) на выходе оптического устройства как kV(x, y), где k – характеристика волны, и установим погрешность оптической длины пути V, то передающий коэффициент можно записать в виде:

isman12.wmf (9)

Zj(x, y) – запись функции зрачка в общем виде. Если мы рассмотрим аберрацию, то для когерентной передаточной функции мы можем написать соотношение:

isman13.wmf (10)

Пересечение функций isman14.wmf и isman15.wmf может быть представлено в виде некоторого соотношения B(ξ, η).

Присутствие аберраций изменяет выражение для оптической передаточной функции:

isman16.wmf (11)

При условии, что мы рассматриваем дефокусировку как аберрацию, известная формула тонкой линзы преобразуется в следующий вид:

isman17.wmf

здесь d1 – расстояние между объектом и объективом; d2 – расстояние между объективом и плоскостью сфокусированного изображения; f – фокусное расстояние объектива; δ является характеристикой смещения плоскости, в которой мы видим изображение, по отношению к плоскости, в которой изображение будет сфокусировано. Выражение для эффективной ошибки длины пути с такой аберрацией, как дефокусировка, можно записать как [15]:

isman18.wmf

Результаты моделирования процесса дефокусировки

На рис. 2 показаны результаты расфокусировки интерферограмм для фазового объекта, такого как тонкая линза, которые были получены соответственно в каналах 3 и 4 голографического интерферо- метра [1–3]. На всех фигурах внутренний квадрат представляет интерференционную картину в присутствии фазовой среды. За пределами внутреннего квадрата мы имеем интерференционную картину, которая получается в отсутствие фазовой среды, при этом все остальные параметры интерферограммы остаются неизменными [4]. Представленные на рисунках интерферограммы имеют различные значения расфокусирующего коэффициента (расфокусирующие коэффициенты интерферограмм на рис. 2, a–в равны δ = 0; 0,003; 0,007). Рисунки показывают, что правильный подбор расфокусирующего коэффициента интерферограммы позволяет довольно четко различить муаровую структуру, то есть низкочастотную составляющую. В этом случае дефокусировка работает как пространственный фильтр, который удаляет высокие частоты в интерферограммах, которые создаются на выходе голографического интерферометра с несколькими выходными каналами.

isman2.tif

а) б) в)

Рис. 2. Интерферограммы линзы. Канал 3 голографического интерферометра с несколькими выходными каналами [1]: а) расфокусировка отсутствует; параметр расфокусирирующий коэффициент δ = 0; б) расфокусирирующий коэффициент δ = 0,003; в) расфокусирирующий коэффициент δ = 0,007

Выводы

Разработана математическая модель, описывающая процесс расфокусировки изображений для случая некогерентной оптической системы и немонохроматического света.

Предложенная модель может быть использована в качестве метода предварительной подготовки изображений (интерферограмм) в компьютерных системах для обработки сложных интерферограмм без использования устройств оптической расфокусировки. Метод расфокусировки может быть достаточно эффективно использован в двух случаях:

а) в качестве фильтра нижних частот, который при соответствующем выборе параметра расфокусировки уменьшает влияние высокочастотных компонентов сложной интерференционной картины и более четко различает муаровую картину.

б) как способ выделения информативных фрагментов изображений, с помощью которого можно при необходимости синтезировать исходное изображение. Этот метод предварительной обработки изображений позволяет существенно сократить объем входных данных при их компьютерной обработке, классификации и декодировании интерферограмм.