Scientific journal
International Journal of Applied and fundamental research
ISSN 1996-3955
ИФ РИНЦ = 0,593

ABOUT THE ROLE OF WATER AND LIPIDS IN THE ORGANIZATION OF LIVING MATTER

Ugarov G.S. 1
1 North-Eastern Federal University named after M. K. Ammosov
According to the first postulate of cell theory, the cell is the basic structural and functional genetic unit of all living organisms and is the smallest unit of a living. The molecular composition of cells includes organic and inorganic components. Each component plays an important role in the life of organisms. However, the special role of water and lipids in the origin and organization of living matter had still not received a high evaluation of researchers. The article attempts to remedy this situation. Life was born in water and a living organism consists of water up to 70-80 %. Water is not only a solvent and the environment but also running a party to many physiological and biochemical processes in the body. Lipids are the structural basis of biological membranes which play a key role in the functional activity of the cell. Plazmolemma surrounds the cell and 2/3 of organelles have membrane sheath and inner membrane formations and transport of the products of synthesis is carried out in a membrane package. Taking all this in account, the new concept of living matter was formulated: «Living matter is an open and self-regulating and self-perpetuating system where the basic structural and functional unit is the cell where as an essential working and structural substances are proteins, nucleic acids and lipids which able to maintain their integrity and activity in the aquatic environment». The definition of Acad. M. V. Wolkenstein is taken as the basis for this definition but it differs significantly. The new formulation for the concept of living matter is based on the theory of terrestrial origin of life and its evolution, but at the same time develops it further. According to the new definition, an organism in hypobiosis state and especially in anabiosis, have not the criterion of the living because of the lack of water, and the body is temporarily transferred from the category of living creature to the category of inanimate. In the applied aspect, a person to be healthy should abandon modern low-fat diet with a predominance of unsaturated fats and to consume sufficient amounts of saturated and polyunsaturated fats, ideally, identical to lipids which are part of cell membranes.
cell theory
the theory of the origin of life
organization
concept of living matter
organism
biomembrane structure
lipids
water

Известно, что все живые организмы состоят из клеток. В современном виде основное положение клеточной теории можно сформулировать так: Клетка – основная структурно-функциональная и генетическая единица всех живых организмов и наименьшая единица живого [14]. Рост и воспроизведение, наследственность и изменчивость – вот эти главные признаки жизни реализуются только на клеточном уровне.

Клетка является открытой системой, при этом ее основной молекулярный состав остается более или менее постоянным. В клетке содержатся минеральные и органические вещества. Основную массу клетки составляет вода – 70-80 %, а минеральных солей всего – 1-1,5 %. Органические вещества представлены белками – 10– 0 %; липидами – 1– %; углеводами – 0,2–2 % и нуклеиновыми кслотами – 1–2 % [20].

В данной работе из числа всех перечисленных веществ нас интересует роль воды и липидов в организации живой материи.

Согласно теории биохимической эволюции Опарина – Холдейна, которая поддерживается большинством исследователей [1,2], жизнь зародилась в воде первичного океана, которая содержала большое количество белковоподобных веществ – пептидов, а также нуклеиновых кислот и других органических соединений. Они образовали высокомолекулярные комплексы – коацерваты или коацерватные капли, которые обладали способностью поглощать различные вещества, растворенные в водах первичного океана. Появление мембраны, отделяющей содержимое коацервата от окружающей среды и, обладающей способностью к избирательной проницаемости, предопределило направление дальнейшей химической эволюции, по пути, развития все более совершенных саморегулирующихся систем, вплоть до возникновения первых клеток [13].

Таким образом, первые живые существа были водными организмами. В процессе длительной эволюции живые организмы вышли на сушу, но, как остроумно заметил Вальтер Г. [5], они «взяли с собой воду», то есть, практически остались водными организмами. Так, высшие растения содержат от 70 до 80 %, сочные плоды до 95 % воды от сырого веса. Общее содержание воды в теле животных колеблется от 50 % до 80 % живой массы.

Роль воды в жизнедеятельности живого организма огромна. Она участвует прямо или косвенно во всех жизненных процессах. Основная масса воды в организме выполняет роль среды, в которой проходят эти процессы. Биохимические реакции, как правило, проходят в растворах воды. И в этом отношении вода является единственной жидкостью, которая обеспечивает оптимальные условия для организации этих жизненно важных биохимических процессов. Она осуществляет связь органов, координирует их деятельность в целостном растении. Вода входит в состав мембран и клеточных стенок, составляет основную часть цитоплазмы, поддерживает ее структуру, устойчивость входящих в состав цитоплазмы коллоидов, обусловливает определенную конформацию молекул белка.

Высокое содержание воды придает содержимому клетки (цитоплазме) подвижный характер. Являясь растворителем, вода обеспечивает транспорт веществ по растению и циркуляцию растворов. Вода – непосредственный участник многих химических реакций. Все реакции гидролиза, многочисленные окислительно-восстановительные реакции (фотосинтез, дыхание) идут с участием воды. Вода защищает растительные ткани от резких колебаний температуры. Обеспечивает упругое тургесцентное состояние растений, с чем связано поддержание формы травянистых растений, ориентация органов в пространстве [15].

Одна важная роль воды – участие в формировании клеточных мембран, которое основано на амфифильности фосфолипидов, т.е. на способности фосфолипидов автоматически формировать полярную поверхность мембраны и гидрофобную внутреннюю фазу [6]. Кроме того, вода еще выполняет регуляторную функцию [17].

Из вышеизложенного видно, что если бы не было воды, не было бы и жизни на Земле.

Другими важнейшими компонентами клетки явлются липиды. В организме липиды выполняют энергетическую, защитную, регуляторную и биоэффекторную функции [8]. Однако, главной в жизнедеятельности организмов является структурообразующая функция липидов. Дело в том, что липиды образуют основу клеточных мембран. В 1 мкм² биологической мембраны содержится около миллиона молекул липидов. В образовании этих структур участвуют фосфолипиды, гликолипиды и холестерол.

Основную структурную роль в биологических мембранах играют фосфолипиды, где они образуют бислой. В мембранах животных клеток они составляют более 50 % всех липидов.

Жизнь в том виде, в каком мы ее знаем, невозможно представить без биомембраны, регуляцирющей обмен веществ между клеткой и средой, а также между различными отсеками (компартментами) внутри самой клетки. Мембрана обеспечивает взаимодействие клетки с внешней средой, избирательно пропуская многие вещества, кроме того, является средой протекания множества биохимических процессов.

Согласно жидкостно-мозаичной модели биологической мембраны [23], мембранные липиды создают жидкую среду для мембранных белков, в которой они могут функционировать. По степени влияния на структуру бислоя и по силе взаимодействия с ним мембранные белки делят на интегральные, полуинтегральные и периферические. Белки в мембране выполняют структурные, каталитические, рецепторные и транспортные функции. В составе мембран могут быть углеводы, которые не представлены самостоятельными соединениями, а обнаруживаются только в соединении с белками (гликопротеины) или липидами (гликолипиды). Углеводы в биомембранах выполняют функции контроля за межклеточными взаимодействиями, поддержания иммунного статуса, рецепции, обеспечения стабильности белковых молекул в мембране.

Любая клетка (прокариотическая, эукариотическая) окружена мембраной – плазмолеммой. Большинство органоидов клетки имеют мембранное строение. Мембранные органоиды делятся на двумембранные и одномембранные. Двумембранным, которые имеют наружную и внутреннюю мембрану, относятся: ядро, митохондрии и пластиды (хлоропласты, лейкопласты и хромопласты). Одномембранные – гладкий и гранулярный эндоплазматческий ретикулумы, Аппарат Гольджи, лизосомы, вакуоль микросомы (пероксисома, глиоксисома и сферосома). Кроме того, все продукты синтеза внутри клетки транспортируются в мембранной оболочке [10].

Биомембрана, участвуя в образовании внешней оболочки и оболочек основных органоидов клетки и их внутренних мембранных структур, в частности, ламеллы – в хлоропластах, кристы – в митохондриях, перегородки в плазмолитической сети, выполняет важнейшие функции, обеспечивающие ее жизнедеятельность и, тем самым, организма в целом.

Мембраны выполняют барьерную функцию, механически отделяя клетки и их органоды от внешнего пространства.

Одна из главных функций мембран – участие в переносе веществ. Этот процесс обеспечивается при помощи трёх основных механизмов: простой диффузией, облегчённой диффузией (пассивные виды транспорта, они идут без затраты энергии) и активным транспортом, который идет с затратой энергии – при помощи спецальных белков переносчиков. А также и везикулярным путем.

Следующая функция – обеспечение процессов трансформации и запасания энергии (фотосинтез и тканевое дыхание – локализованы в мембранах хлоропластов и митохондрий, а у бактерий – в плазмолемме).

Немаловажная функция мембран – способность генерировать биоэлектрические потенциалы за счет неравномерного распределения ионов по обе стороны мембраны.

Метаболические функции мембран определяются двумя факторами: во-первых, связью большого числа ферментов и ферментативных систем с мембранами, во-вторых, способностью мембран физически разделять клетку на отдельные отсеки, отграничивая друг от друга метаболические процессы, протекающие в них.

Клеточная рецепция и межклеточные взаимодействия. Под этой формулировкой объединен весьма обширный и разнообразный набор важных функций клеточных мембран, определяющих взаимодействие клетки с окружающей средой и формирование многоклеточного организма, как единого целого. Молекулярно-мембранные аспекты клеточной рецепции и межклеточных взаимодействий касаются прежде всего иммунных реакций, гормонального контроля роста и метаболизма, закономерностей эмбрионального развития [3,11].

Исследователи, особенно в последнее время, стали осознавать крайне важную роль липидов в жизнедеятельности организмов и начали широко внедрять новые технологии анализа липидов, активно использовать методы генной и белковой инженерии, что позволяет прогнозировать прорыв в липидологии в XXI веке. Об этом говорили руководители и участники I-й и II-й виртуальной международной научно-практической конференции по липидологии «Липидология – наука XXI века»(2013, 2014 гг.) [4]. Конференции были организованы Cистемой виртуальных миров Pax Grid совместно с лабораторией оксилипинов Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН [7], крупнейшего центра физико-химической биологии и биотехнологии в России.

Развивается отдельная область знания – липидомика – научная дисциплина, предметом которой является полная характеристика молекулярных видов липидов и выяснение их биологической роли в отношении экспрессии генов белков, вовлеченных в метаболизм и функции липидов [21].

Подчеркивая особую роль липидов в организации и деятельности живых систем, стали говорить о липидах, как о фундаменте жизни [19].

Несмотря на это, липиды еще не получили достойную оценку, в частности, в многочисленных определениях понятия что такое жизнь [12,16].

Учитывая роль воды и липидов в зарождении и организации живой материи, о которой речь шла выше, а также признавая клетку как единицу жизни, мы попытались дать новое определение понятия живой материи. За его основу нами взята определение понятия жизни, данное М.В. Волькенштейном: «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров – белков и нуклеиновых кислот», которое, наряду с классическим определением Ф.Энгельса, часто приводится в учебниках и других публикациях [2,9],

Солгасно нашему определению, живая материя представляет собой открытую, саморегулирующуюся и самовоспроизводящуюся систему, элементарной структурной и функциональной единицой которой является клетка, где в качестве важнейших рабочих и конструкционных веществ выступают белки, нуклеиновые кислоты и липиды, способные сохранять свою целостность и активность в водной среде.

Из рассматриваемого определения следует, что вероятность занесения жизни из-за пределов нашей планеты чрезвычайно низка, и жизнь действительно зародилась на Земле. Поступающие на Землю органические вещества, в том числе, даже РНК и ДНК, могли только ускорить процесс зарождение жизни, так как вне клетки жизнь не существует. Убедительным тому примером могут служить вирусы, которые проявляют свойства живой материи только после переноса генетического материала в клетку. Из определения также вытекает, что живая материя является продуктом эволюции, которая шла по схеме: коацерваты – клетка – одноклеточные – колониальные – многоклеточные – прокариоты – эукариоты и многообразие видов последних, которые ныне существуют на Земле.

Новое определение дает более полную характеристику живой материи, чем многие предыдущие, и будет полезным для студентов при изучении курсов общебиологических дисциплин, в частности, курса цитологии. Например, всю структуру преподавания курса цитологии можно построить на основе нового определения понятия живой материи – клеточная теория строения живых организмов, зарождение живой материи в »бульоне» первичного океана и ее дальнейшая эволюция, значение компонентов молекулярного состава клетки, роль липидов и воды в строении и функционировании биомембраны, мембранные органиоиды клетки, роль липидов и воды в сохранении структуры и функционировании нуклеиновых кислот и белков и т. д..

Гипобиология, которая изучает гипобиоз у организмов [18], рассматривает это явление, как результат физического и физиологического обезвоживания. Физиологическое обезвоживание наступает при охлаждении организма ниже +40С, когда структура воды превращается из жидкой в жидко-кристаллическую или в состояние «жидкого льда». Жидко-кристаллическая вода, благодаря своим параметрам, не может проникать через мембраны, становится физиологически инертной и перестает выполнять свойственные ей важнейшие функции в организме. В физиолого-биохимических процессах также не участвуют иммобилизованная и, так называемая, связанная вода.

Физиологическое обезвоживание равнозначно физическому, только весь парадокс заключается в том, что в это же время в организме может содержаться значительное количество воды, которая для него становится чужеродным веществом, простым балластом. Из этого можно сделать еще одно очень интересное заключение. Получается что, в свете нового определения понятия живой материи, у организма, находящегося в состоянии гипобиоза, тем более и анабиоза, не выполняется критерий живого из-за отсутствия воды, и организм временно переходит из категории живого существа в категорию неживого.

Очевидно, чтобы быть здоровым, человек должен потреблять в пищу достаточное количество насыщенных и ненасыщенных жиров, в идеале, близких по составу к тем липидам, которые входят в состав биомембран, с целью удовлетворения потребности организма для поддержания нормальной структуры и функционирования всех мембран своих клеток. Как считает Dr. Dwight Lundell [22], кардиохирург с 25-летним стажем, ожирение, а также травмы и воспаление кровеносных сосудов, приводящих к сердечным заболеваниям, вызваны диетой с низким содержанием насыщенных жиров и высоким содержанием полиненасыщенных жиров, особенно омега-6 и углеводов. Такая диета рекомендуетсяй в течение многих лет традиционной медициной.

Автор понимает, что живая материя очень многогранна в своих проявлениях, и дать точное и всеобъемлющее определение понятия живой материи вряд ли представляется возможным. Однако, каждая попытка, предпринимаемая в этом направлении специалистами из разных областей знания, все же приближает нас к истине.