Scientific journal
International Journal of Applied and fundamental research
ISSN 1996-3955
ИФ РИНЦ = 0,593

QUANTUM-CHEMICAL ASSESSMENT OF REAGENTS’ ELECTRON-DONOR PROPERTIES DURING THEIR INTERACTING WITH THE COAL SURFACE

Girevaya H.Y. 1 Varlamova I.A. 1 Kalugina N.L. 1 Churlyaeva N.A. 1 Girevaya H.Y., 1
1 Nosov Magnitogorsk State Technical University
Quantum-chemical calculations of the parameters of reactivity (PRS) of organic compounds which belong to different classes (alkanes, alkenes, arenes, alcohols, aromatic esters) have been evaluated. The saturated hydrocarbons are σ-bases and σ-donors. They do not show high sorption activity when interact with the coal surface as has been shown. The unsaturated compounds (alkenes and arenes) are π-bases and π-donors. The HOMO boundary π-orbital (highest occupied molecular orbital) and the LUMO boundary π*-orbital (lowest unoccupied molecular orbital) determine the reaction activity of alkenes and arenes. The unsaturated compounds have higher sorption activity than σ-donors because they are π-donors. Heterocompounds are n-donors because they contain unshared pairs of electrons which are available for interaction with the LUMO coal surface. The n-orbitals lie above the π- and σ-orbital that’s why there are more outbreaks during the formation of communication when they interact with electrophilic centers of the coal surface. The sequence of organic compounds in which electron properties and concentrate output in the flotation of coal are increasing has been obtained on the basis of calculations and the experimental data. It consistently includes alkanes < alkenes < arenes < alcohols < aromatic esters.
electron-donor properties of the compounds
σ-donor
π-donor
n-donors
electrophilic and nucleophilic centers
sorption activity

Дефицит углей высокой коксуемости в России и за рубежом в последние годы компенсируется увеличением добычи труднообогатимых углей, на долю которых приходится до 60 % мировых запасов угля [1, 3, 9, 10]. С развитием флотационного процесса и вовлечением в переработку углей разной стадии метаморфизма возникла необходимость создания новых реагентов, обладающих большей селективностью действия. При подборе органических реагентов-собирателей для флотации труднообогатимых углей перспективной представляется предварительная оценка их свойств на основании расчёта квантово-химических параметров реакционной способности (ПРС), к важнейшим из которых относятся дипольный момент μ, энергия верхней занятой молекулярной орбитали (ВЗМО) εm; энергия нижней свободной молекулярной орбитали (НСМО) εm+1; молекулярная электроотрицательность χ; максимальный положительный заряд max «+»; максимальный отрицательный заряд max «-». В проведенных ранее исследованиях было показано, что реагенты-собиратели при взаимодействии с угольной поверхностью проявляют нуклеофильные (электронодонорные) свойства, атакуя электрофильные участки угольной поверхности [1-3]. Рассчитанные значения ПРС органических соединений позволяют проводить оценку их электронодонорных свойств и прогнозировать эффективность взаимодействия с угольной поверхностью в процессе флотации.

Цель исследования – оценка электронодонорных свойств реагентов различных классов при их взаимодействии с угольной поверхностью на основании квантово-химического расчета параметров их реакционной способности.

Материалы и методы исследования

В качестве объекта исследования рассмотрены органические соединения, относящиеся к различным классам (алканы, алкены, арены, спирты, сложные эфиры ароматического ряда). Квантово-химические расчеты ПРС данных соединений проведены методом параметризации РМ 3 в приближении ограниченного и неограниченного метода Хартри-Фока (RHF/6-311 G(d)) в полноэлектронном валентно-расщепленном базисном наборе 6-31l G(d) с использованием программных пакетов HyperChem 7.5 Pro. Методика проведения квантово-химических расчётов рассмотрена в работах [2, 4, 6].

Результаты исследования и их обсуждение

С позиции теории химической связи и физики твердого тела при хемосорбции реагентов за счет образования координационной связи по донорно-акцепторному механизму неподеленная пара электронов донорного атома (n-донора) или π-электроны непредельной связи реагента-собирателя (π-донора) переходят на низшую свободную молекулярную орбиталь активных центров угольной поверхности с образованием связывающей и разрыхляющей молекулярных орбиталей (МО). Связывающее состояние достигается под поверхностной энергетической зоной, а разрыхляющее – в области выше энергии уровня молекулы до адсорбции. В общем случае хемосорбция энергетически выгодна, когда уровень Ферми находится ниже разрыхляющего хемосорбционного состояния.

Можно ожидать, что наиболее прочное и избирательное закрепление реагента-собирателя на угольной поверхности будет наблюдаться в том случае, если энергия МО реагентов и их симметрия будут наиболее близки этим характеристикам МО поверхности угля. Согласно данным современной теории хемосорбции волновые функции электронных состояний в поверхностной зоне локализованы преимущественно на первых двух слоях поверхности. При этом более 90,0 % плотности заряда поверхностных соединений приходится на первый слой. В работах [1, 4] приведены квантово-химические параметры функциональных групп, моделирующих структуру первого слоя органической массы угля (ОМУ).

Рассчитанные значения квантово-химических параметров реакционной способности соединений различных классов приведены в сводной таблице (табл. 1). Об эффективности их взаимодействия с угольной поверхностью в ходе эксперимента судили по выходу флотоконцентрата.

Таблица 1

Квантово-химические параметры реагентов и их эффективность в процессе флотации

Соединение

μ, D

έm, эВ

έm+1, эВ

χ, эВ

mах «+»

mах

«-»

Выход концентрата, %

Октан

0,0014

-11,27

+3,45

3,92

0,051

0,109

16,19

Декан

0,0019

-11,27

+3,18

4,05

0,051

0,109

16,97

Додекан

0,0003

-11,27

+3,14

4,07

0,051

0,111

17,28

Октен-1

0,257

-10,04

+1,17

4,44

0,099

0,175

55,03

Децен-1

0,253

-10,29

+1,49

4,40

0,104

0,155

55,77

Додецен-1

0,082

-10,28

+1,81

4,24

0,104

0,155

56,41

Метилбензол

0,261

-9,44

+0,38

4,53

0,105

0,109

60,07

Этилбензол

0,214

-9,52

+0,37

4,56

0,11

0,11

59,32

Октанол-1

1,410

-9,99

+0,53

4,73

0,18

0,31

62,31

Деканол-1

1,400

-10,89

+0,92

4,95

0,18

0,31

63,05

Диметилфталат

2,486

-10,4

-0,50

5,43

0,419

0,365

79,03

Диэтилфталат

2,325

-10,5

-0,50

5,48

0,424

0,370

79,45

Диметилтерефталат

2,724

-10,4

-0,92

5,68

0,418

0,377

80,68

Диэтилтерефталат

3,241

-10,4

-1,03

5,70

0,421

0,381

81,12

В молекулах предельных углеводородов граничными орбиталями, определяющими их реакционную способность, являются σ-орбитали. Алканы могут быть только σ-донорами (σ-основаниями), у них очень низкие значения дипольного момента, энергии верхней занятой молекулярной орбитали, молекулярной электроотрицательности, максимального отрицательного заряда. ВЗМО алканов находятся в основном на атомах углерода, подход к ним пространственно затруднен. При взаимодействии ВЗМО алканов с НСМО молекулярных группировок угольной поверхности происходит слабое возмущение, так как разница в их энергии значительна, составляет почти 11 эВ, это обусловливает нехимическое взаимодействие, и выход концентрата не достигает 20 %. Добиться увеличения выхода концентрата можно только за счет значительного увеличения расхода реагента.

Алкены являются π-донорами и проявляют при взаимодействии с НСМО молекулярных группировок поверхности угля возмущение средней силы по сравнению с σ-донорами. Граничными орбиталями алкенов, определяющими их реакционную способность, будут π-орбитали: π-орбиталь – ВЗМО с энергией -10,04÷10,29 эВ и π*-орбиталь – НСМО с энергией +1,17÷3,14 эВ. НСМО большинства электрофильных центров угольной поверхности по энергии близки к энергии π-ВЗМО алкенов, при их сближении происходит более сильное возмущение, чем при взаимодействии π*-НСМО алкена с ВЗМО нуклеофильных центров угольной поверхности. Поэтому алкены проявляют именно электронодонорные свойства. Ориентация взаимодействия между π-ВЗМО алкена и НСМО электрофильного центра определяется двумя факторами: величинами отрицательного заряда на атомах углерода и коэффициентами, с которыми два атома углерода связи С=С входят в π-ВЗМО.

Арены также являются π-донорами. При их взаимодействии с угольной поверхностью ароматический секстет π-электронов сохраняется. Энергия π-ВЗМО аренов (-9,52 эВ) еще ближе к энергии НСМО электрофильных центров угольной поверхности и при их сближении происходит еще более сильное возмущение, чем при взаимодействии алкенов с угольной поверхностью.

В переходном состоянии образуется трехцентровая двухэлектронная связь между углеродом, водородом и тем атомом электрофильного центра угольной поверхности, на котором плотность НСМО достаточно велика. Арены также могут образовывать π-комплексы, которые можно рассматривать как «комплексы с переносом заряда». Связь в них возникает как следствие частичного переноса электрона от ВЗМО арена к НСМО электрофильного центра, то есть следствие «делокализации» электронов между донором и акцептором.

Замена σ-донорных флотореагентов на π-донорные приводит к увеличению выхода концентрата с 17,28 % (додекан) до 56,41 % (додецен-1). При использовании ароматических π-доноров (например, толуола, этилбензола) выход концентрата еще выше – до 60 %. Этим объясняется широкое использование в качестве флотореагентов технических продуктов (керосино-газойлевая фракция, легкие олигомеры изобутилена, кубовые остатки производства изопропилбензола, УФ-2 и др.), представленных ароматическими и непредельными углеводородами (С9-С12), которые имеют повышенную энергию адсорбии на угольной поверхности по сравнению с алканами, позволяют значительно повысить извлечение горючей массы в концентрат при снижении их расхода в 1,5 раза.

Гетеросоединения – n-доноры, они содержат неподеленные пары электронов, пространственно доступные для взаимодействия с НСМО молекулярных группировок угольной поверхности. n-орбитали лежат выше π- и σ-орбиталей, поэтому возмущение, приводящее к образованию связи, значительно больше.

Кроме того, соединения с гидроксильными и карбоксильными группами эффективнее, чем соединения с сульфо- или аминогруппами [4]. Поэтому из гетеросоединений в исследовании были рассмотрены спирты и сложные эфиры ароматического ряда.

Спирты, по сравнению с углеводородами предельного и непредельного ряда, имеют более высокое значение дипольного момента μ=1,4÷1,6 и максимального отрицательного заряда (-0,31) на атомах кислорода гидроксильной группы, что обусловливает возможность образования достаточно прочных водородных связей и несколько увеличивает выход флотоконцентрата (до 63 %).

Сложные эфиры ароматического ряда обладают еще более высокими значениями дипольных моментов (до 3,24 D), максимальных отрицательных зарядов на атомах кислорода карбонильной группы (-0,365 ÷ -0,381), кроме того, сложные эфиры имеют неподеленные пары электронов на атомах кислорода алкоксигрупп, ароматические сложные эфиры дополнительно проявляют π-донорные свойства благодаря наличию π-сопряженной системы бензольного кольца. Это приводит к увеличению выхода концентрата до 80 % и выше.

Заключение

Таким образом, квантово-химические параметры реакционной способности позволяют оценить электронодонорные свойства реагентов различных классов при их взаимодействии с угольной поверхностью, определить степень их нуклеофильности.

Электронодонорные свойства реагентов при их взаимодействии с угольной поверхностью усиливаются в ряду σ-доноры < π-доноры < n-доноры или алканы < алкены < арены < спирты < сложные эфиры ароматического ряда.