Scientific journal
International Journal of Applied and fundamental research
ISSN 1996-3955
ИФ РИНЦ = 0,593

OPTICAL AND ELECTRICAL PROPERTIES OF Fe-BASED HEUSLER ALLOYS

Shreder E.I. 1 Kourov N.I. 1 Dyakina V.P. 1 Marchenkova E.B. 1 Emelyanova S.M. 1 Perevozchikova Yu.A. 1 Podgornykh S.M. 1 Marchenkov V.V. 1
1 M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg
1793 KB
The paper presents the results of a study of the optical and electrical properties of Fe2MeAl (Me = Ti, V, Cr, Mn, Fe, Co, Ni) Heusler alloys. The substantial changes of band structure near the Fermi level in the substitution of Me are observed. These changes are accompanied of considerable changes in the optical and electrical properties. The nature of their behavior is typical for metals in the Fe2MeAl (Me = Ti, Fe, Co, Ni) alloys. The anomalous optical and electrical properties behavior of the alloys with Me = V, Cr, Mn, defined by the presence of a pseudogap at the Fermi level in one or both spin subsystems.
Heusler alloys
electrical resistance
dielectric constant
optical conductivity
electron configuration

Объектом особого внимания исследователей являются сплавы Гейслера X2MeZ (X, Me – переходные металлы, Z – s, p-элемент), которые, согласно теоретическим расчетам, являются полуметаллическими ферромагнетиками (ПМФ) – в их зонном спектре имеется щель в одной спиновой подсистеме [6, 8]. Проблема формирования электронной структуры ПМФ вызывает большой интерес как с теоретической, так и чисто прикладной позиции. Ситуация резко различных состояний для спина вверх и для спина вниз интересна для общей теории коллективизированного магнетизма [1]. Спиновая поляризация электронов проводимости в ПМФ может достигать 100 %, что делает данные сплавы перспективными для применения в устройствах спиновой электроники [10]. Предыдущие эксперименты показали, что в сплавах Fe2МеZ, Co2МеZ – полуметаллических ферромагнетиках наблюдается аномальное поведение оптических и электрических свойств [2, 9]. Однако механизмов, объясняющих такое поведение, нет.

Целью работы является систематическое комплексное исследование и сравнение проявления энергетической щели в оптических спектрах и температурной зависимости электросопротивления сплавов Гейслера на основе Fe при варьировании атома Mе в ряду 3d-металлов.

Материалы и методы исследования

Образцы сплавов выплавлены в индукционной печи в атмосфере очищенного аргона с трехкратным переплавом для обеспечения равномерного перемешивания компонентов и получения лучшей однородности по составу. Полученные сплавы отжигали в течение 48 часов при 800 K в атмосфере аргона с последующим охлаждением до комнатной температуры со скоростью около 100 K/hour. Атомное содержание элементов в сплавах контролировалось с помощью сканирующего электронного микроскопа FEI Company Quanta 200, оснащенного приставкой рентгеновского микроанализа EDAX. Исследования показали, что для всех изученных сплавов отклонения от стехиометрического состава являются незначительными. Рентгенографические данные, полученные в Cr Ka -излучении на дифрактометре ДРОН-6, подтвердили формирование L21 структуры. Параметры кристаллической решетки исследованных сплавов близки к опубликованным ранее [5]. Соединение Fe3Al, кристаллизирующееся в DO3 структуре, имеет две неэквивалентных позиции атомов железа – Fe(I) и Fe(II) [7]. Поэтому формально его можно отнести к сплавам Гейслера с формулой Fe(I)2Fe(II)Al. Структурная аттестация исследованных сплавов была выполнена в центре коллективного пользования ИФМ УрО РАН.

Аттестация образцов по магнитным свойствам показала, что все сплавы являются ферромагнетиками. В таблице приведены значения точек Кюри вместе со значениями остаточного сопротивления и статической проводимости при комнатной температуре, полученные в настоящей работе. Сплав Fe2NiAl известен с 30-х годов, изучался и использовался как материал для постоянных магнитов.

Измерения электросопротивления были выполнены с использованием общепринятой 4-х контактной методики на постоянной токе, с коммутацией направления электрического тока через образец.

Измерения показателей преломления n и поглощения k выполнены эллипсометрическим методом Битти. Значения оптических постоянных n и k использованы для вычисления действительной ε1(w) части диэлектрической проницаемости, оптической проводимости hreder01.wmf (w – циклическая частота световой волны).

Результаты исследования и их обсуждение

1. Температурная зависимость электросопротивления

Характер поведения электросопротивления и оптических свойств в ИК области спектра определяется параметрами электронов проводимости – плазменной частотой Ω и частотой релаксации γ. Частота релаксации γ включает в себя все механизмы рассеяния электронов. Квадрат плазменной частоты Ω2, согласно [3], связан с плотностью состояний на уровне Ферми и пропорционален потоку скорости электронов через поверхность Ферми hreder02.wmf. Для кубических кристаллов hreder03.wmf. На рис. 1 представлены кривые температурной зависимости электросопротивления исследованных сплавов.

По характеру температурной зависимости электросопротивления можно выделить три принципиально разные группы сплавов. Сплавы Fe2TiAl, Fe3Al и Fe2NiAl, имеют поведение ρ(T), характерное для сплавов и интерметаллических соединений: невысокие значения остаточного сопротивления (ρ0 < 1 mΩ?m) и положительный температурный коэффициент сопротивления (ТКС). Кроме того, следует отметить «эффект насыщения сопротивления», когда с ростом температуры наклон зависимости ρ(T) уменьшается. В сплавах Fe2CrAl, Fe2MnAl и Fe2СoAl в широком интервале температур, включающем как магнитоупорядоченное, так и разупорядоченное состояния, наблюдается отрицательный ТКС. Сплав Fe2VAl имеет полупроводниковый ход кривой электросопротивления с высоким остаточным сопротивлением и отрицательным ТКС.

Таблица 1

Значения температуры Кюри ТС, остаточного сопротивления ρ0 и статической проводимости при комнатной температуре исследованных сплавов

Сплавы

Fe2TiAl

Fe2VAl

Fe2CrAl

Fe2MnAl

Fe3Al

Fe2CoAl

Fe2NiAl

ТС, К

123[14]

7[8]

246[8]

150

~775[15]

800

800

ρ0, mΩm

0,115

20,2

4,43

2,63

0,53

1,61

0,615

s300 К, 1014 с-1

170

5

24

31

74

100

123

hrederE1.tif

Рис. 1. Температурные зависимости электросопротивления сплавов Fe2MeAl, Me = V (1), Cr (2), Mn (3), Fe (4), Ni (5) Ti (6), Co (7)

hrederE2.tif

Рис. 2. Дисперсия действительной части диэлектрической проницаемости ε1(ω) сплавов

hrederE3.tif

Рис. 3. Дисперсия оптической проводимости σ(ω) сплавов в ИК области спектра

2. Внутризонное поглощение

В металлах и сплавах в инфракрасной области спектра основную роль в формировании оптических свойств играет механизм внутризонного ускорения электронов полем световой волны [3]. Его вклад определяется параметрами электронов проводимости и уменьшается пропорционально квадрату частоты падающего света ω2. Отрицательные значения действительной части диэлектрической проницаемости ε1 в ИК–области спектра являются оптическим критерием проводимости металлического типа вещества.

На рис. 2 приведены кривые действительной части диэлектрической проницаемости ε1 исследованных сплавов. Сплавы, содержащие V и Cr, имеют положительные значения ε1 вплоть до границы исследованного интервала. Остальные сплавы имеют отрицательные значения, различающиеся по абсолютной величине. Это указывает на наличие свободных носителей в каждом сплаве, но с различной концентрацией.

Оценка квадрата плазменной частоты Ω2 электронов проводимости из анализа зависимости hreder04.wmf в ИК области дала значения в интервале от 3·1030 с-2 для Fe2MnAl до 20·1030 с-2 для Fe2NiAl. Для сплава Fe2VAl ранее было получено оценочное значение 2,5·1028 с-2 [4]. Для сплава Fe2CrAl определить W2 невозможно из-за отсутствия участка, где доминирует внутризонное поглощение и действительная часть диэлектрической проницаемости ε1(w) отрицательна.

Из соотношения hreder05.wmf (e и m-заряд и масса свободного электрона) эффективная концентрация носителей заряда Nэфф ~ 1022 см-3 для Fe2NiAl, ~1021 см-3 для Fe2MnAl и ~1019 см-3 для Fe2VAl. По сравнению с нормальными металлами эти значения ниже на 1, 2 и 4 порядка, соответственно.

Таким образом, исследования диэлектрической проницаемости показали, что замена атома Ме в сплавах сопровождается значительным изменением металлических (проводящих) свойств. Результаты оптических исследований согласуются с данными по измерению электросопротивления.

3. Межзонное поглощение

Как известно, в пределе w → 0 оптическая проводимость приближается к значениям статической [3]. На рис. 3 показана дисперсия оптической проводимости σ(w) сплавов в ИК области спектра. На оси ординат нанесены точки, соответствующие статической проводимости при комнатной температуре. Из рисунка видно, что экспериментальные кривые s(w) действительно стремятся к этим точкам (пунктирные линии): Аномальное поведение оптической проводимости сплавов Fe2VAl Fe2CrAl, Fe2MnAl согласуется с аномальным поведением электросопротивления.

Обсуждение экспериментальных результатов проведены на основе расчетов электронной структуры.

1. Согласно зонным расчетам, для сплавов Fe3Al, Fe2CoAl и Fe2NiAl уровень Ферми расположен в области высокой плотности d-состояний в зоне со спинами вниз (↓) и в области низкой плотности состояний в зоне со спинами вверх (↑). В случае сплава Fe2TiAl в системе зон со спинами вверх (↑) два больших пика плотности d-состояний Fe ниже и выше ЕF разделены энергетической щелью шириной ~0,7 эВ [8]. В системе зон со спинами (↓) уровень Ферми расположен на пике N(E), образованном d-состояниями Fe. Поскольку в реальном образце, как показал рентгеноструктурный анализ, присутствует дополнительная фаза в количестве 12–15 %, в спектре присутствует соответствующий дополнительный вклад. На уровень Ферми выходят s-p-состояния, зонные скорости электронов значительно выше. Это проявляется в наличии внутризонного поглощения и высоком значении статической проводимости.

2. Сплавы Fe2CrAl, Fe2MnAl имеют электронную структуру, характерную для ПМФ [8]. В системе зон со спинами вниз (↓) два больших пика от d-состояний Fe (ниже ЕF) и d-состояний Mn(Cr) и Fe (выше ЕF) разделены энергетической щелью шириной ~ 0,5 эВ. Уровень Ферми расположен вблизи края энергетической щели, плотность состояний на нем мала. В системе зон со спинами вверх (↑) d-состояния Fe и Mn(Cr) формируют общую d-зону. Уровень Ферми для Fe2MnAl расположен между пиками плотности состояний или на склоне пика. Для Fe2CrAl уровень Ферми расположен на пике N(E), образованном d-состояниями Cr и Fe [8]. Это обуславливает низкие зонные скорости электронов и, как следствие, низкие значения квадрата плазменной частоты.

3. Особое поведение оптических и электрических свойств в случае Fe2VAl обусловлено тем, что уровень Ферми расположен внутри глубокой псевдощели в плотности состояний [8].

Заключение

Представлены результаты исследования оптических и электрических свойств большой группы сплавов Гейслера Fe2MeAl (Me = Ti, V, Cr, Mn, Fe, Co, Ni). Показано, что замена атома Ме в сплавах сопровождается значительным изменением металлических (проводящих) свойств. Выделены 3 принципиально разных типа температурной зависимости электросопротивления и дисперсии оптической проводимости сплавов, особенно в ИК области спектра. Существенные изменения оптических и электрических свойств при замещении атома Ме обусловлены существенными изменениями электронной структуры сплавов. Аномальное поведение свойств сплавов с Ме = V, Cr, Mn можно считать проявлением энергетической щели в оптических спектрах.

Работа выполнена при частичной поддержке Программы фундаментальных исследований УрО РАН (проект № 15-17-2-12).