Качество очистки зернового материала в пневматическом сепараторе во многом зависит от точности установки скорости υв воздушного потока в пневмосепарирующем канале (ПСК) [4, 5, 9, 12].
В основном для регулирования скорости υв воздушного потока в ПСК зерно- и семяочистительных машин применяют глухие поворотные заслонки, вследствие простоты конструкции и изготовления [3, 6, 7, 8, 10, 14].
Расходная характеристика такого регулятора расхода воздуха зависит от особенности работы генератора воздушного потока и сопротивления пневмосистемы зерноочистительной машины. С учетом типа и параметров вентилятора, конструкции пневмосистемы и конструкционных особенностей заслонки получена физико-математическая модель работы регулятора расхода воздуха в пневмосистеме зерноочистительной машины [11, 13].
Разработанный метод расчета расходной характеристики регулятора расхода воздуха дает возможность построения простых устройств автоматического регулирования скорости υв воздушного потока с помощью дроссельных устройств в пневмосистемах зерноочистительных машин. При этом для оценки соответствия результатов теоретических исследований по регулированию скорости воздушного потока в ПСК зерноочистительной машины дроссельными устройствами требуется сравнительный анализ с экспериментальными данными.
Цель исследования
Целю исследований является проверка соответствия результатов теоретических исследований по разработке метода расчета расходной характеристики регулятора расхода воздуха с экспериментальными данными регулирования скорости воздушного потока в ПСК зерноочистительной машины.
Материалы и методы исследования
Для сравнительного анализа расчетных и опытных данных изменения относительного расхода μв воздуха в ПСК зерноочистительной машины, приведенных в работе [15], выбраны поворотные двухплечие глухая и перфорированная заслонки c углом поворота α = 80 °, соответствующим полному перекрытию проходного сечения воздухоподводящего канала. Ширина l каждого прямоугольного отверстия перфорированных пластин заслонки имела значение 0,028 м, а ее максимальный коэффициент μЗmax живого сечения составлял 0,36. Проверку гипотезы о соответствии результатов теоретических исследований с экспериментальными данными осуществляли с принятием области поля допуска различия экспериментальных данных в пределах ± 10 % и по методу проверки статистической гипотезы о принадлежности двух выборок одной генеральной совокупности по критерию знаков. При соответствии расчетных значений в области допуска различия экспериментальных данных и гипотезы по критерию знаков разработанный метод расчета расходной характеристики регуляторов расхода воздуха в пневмосистемах зерноочистительных машин принимается.
Результаты исследования и их обсуждение
Расходные характеристики изучаемых регуляторов расхода воздуха представлены на рис. 1, 2 и 3. На представленных графиках также выделена штриховкой серого цвета область поля допуска различия экспериментальных данных в принятых пределах ± 10 % согласно методики проверки соответствия результатов теоретических исследований с экспериментальными данными.
Опытные данные зависимости относительного расхода μв воздуха глухой двухплечей заслонки от угла α ее поворота в воздухоподводящем канале описываются уравнением (рис. 1)
, ; (1)
а расчетные значения данного регулятора выражаются следующей зависимостью
,
; (2)
Рис. 1. Зависимости относительного расхода μв воздуха глухой двухплечей заслонки от угла α ее поворота в воздухоподводящем канале: – – – – – экспериментальные данные; –––––– – теоретические данные; – область поля допуска различия экспериментальных данных
Анализируя обе полученные зависимости (1) и (2) следует отметить, что при перекрытии воздухоподводящего канала до 40 ° расчетные значения относительного расхода μв воздуха в ПСК находятся в пределах области поля допуска различия экспериментальных данных для глухой поворотной заслонки. Максимальное отклонение теоретических данных от экспериментальных в этом случае составляет 11,94 %.
При дальнейшем повороте заслонки теоретические данные находятся за пределами области поля допуска различия опытных данных. В этом случае теоретическая зависимость μв = f(α) находится ниже границы области поля допуска различия экспериментальных данных. Такое расхождение обусловлено тем, что при повороте глухой заслонки в зазоре между ее пластиной и стенкой воздухоподводящего канала возникает инжекционный эффект, а потому показатели функции μв = f(α) экспериментальных данных выше расчетных.
В расчетной расходной характеристике заслонки данное явление не учтено ввиду отсутствия информации в технической литературе. Кроме того, расчетная расходная характеристика μв = f(α) получена для заслонки с углом полного перекрытия воздухоподводящего канала установки α = 90 °. Это связано также с тем, что в современной технической литературе отсутствуют данные для расчета расходной характеристики глухой поворотной заслонки с другими углами полного перекрытия канала.
В тоже время расчетные значения μв от нижней границы области поля допуска различия экспериментальных данных незначительны и при α = 50, 60, 70 и 80 ° составляют 0,10; 0,08; 0,08; и 0,06 соответственно. Поэтому расчетные значения μв = f(α) для глухой поворотной заслонки вполне сопоставимы с полученными экспериментальными данными.
Для проверки гипотезы о том, что уравнения (1) и (2) задают одну и туже зависимость в статистическом смысле воспользуемся критерием знаков [1]. Вычислим значения μв с шагом 5 ° по формулам (1) и (2), затем найдем разности экспериментальных и теоретических значений (μв экспер. – μв теорет.), из них количество N разностей не равных нулю составляет 15, а количество положительных разностей m = 5. По таблице [2] найдем критическое значение числа испытаний Nкрит., соответствующее заданному уровню значимости 0,05 и m: Nкрит. (0,05; 5) = 18. Вследствие того, что Nкрит. > N, то гипотеза о совпадении уравнений (1) и (2) принимается.
Расходная характеристика μв = φ(α) поворотной двухплечей перфорированной заслонки, представленная на рис. 2, описывается уравнением
, , (3)
а расчетная расходная характеристика данного регулятора выражается зависимостью
, . (4)
Из полученных зависимостей (3) и (4) следует, что расчетные значения перфорированной заслонки при перекрытии воздухоподводящего канала установки (μЗ = 0,36) находятся в области поля допуска различия экспериментальных данных. Отклонение теоретических данных от экспериментальных составляет 1,02…8,33 %. Только при α = 80 ° данные отклонения возрастают до 15,38 %. Однако расчетное значение μв при α = 80 ° отличается от нижней границы области поля допуска различия экспериментальных данных совершенно незначительно, которое составляет 0,025.
Рис. 2. Зависимости относительного расхода μв воздуха перфорированной заслонки от угла α поворота ее в воздухоподводящем канале при коэффициенте живого сечения μЗ = 0,36: – – – – – экспериментальные данные; –––––– – теоретические данные; – область поля допуска различия экспериментальных данных
Следует отметить, что теоретические значения μв меньше опытных. Такой характер зависимости μв = φ(α) обусловлен тем, что через жалюзи заслонки при ее установке на угол α = 80 ° в канале вследствие появления в них инжекционного эффекта истекает большее количество воздуха. Данное явление из-за отсутствия в научной литературе необходимой информации не было учтено при получении теоретической зависимости μв = φ(α).
Рис. 3. Зависимости относительного расхода μв воздуха перфорированной заслонки от коэффициента перекрытия ее отверстий: – – – – – экспериментальные данные; –––––– – теоретические данные; – область поля допуска различия экспериментальных данных
При дальнейшем перекрытии канала перфорированной заслонкой с уменьшением ее начального коэффициента μЗ живого сечения с 0,36 до 0 (или изменением коэффициента перекрытия ее отверстий с 0 до 0,36) ее расходная характеристика описывается уравнением (рис. 3)
, , (5)
а расчетные значения этого регулятора в данном случае выражаются следующей зависимостью
,
, (6)
Следует отметить, что при = 0 различие опытных и расчетных данных составляет 15,38 %, при этом расчетное значение μв от нижней границы области допуска экспериментальных данных отличается только на 0,025. В остальной области изменения расчетные значения зависимости μв = ψ() находятся в области допуска различия экспериментальных данных.
Выводы
Таким образом, результаты теоретических исследований по расчету расходных характеристик поворотных двухплечих глухой μв = f(α) и перфорированной μв = φ(α) и μв = ψ() заслонок согласуются с полученными экспериментальными данными отмеченных регуляторов расхода воздуха. Разработанный метод расчета расходных характеристик регуляторов расхода воздуха может применяться при создании новых технологических схем пневматических сепараторов зерна.