Дифффузионные процессы на границах зерен в значительной степени определяют механизмы пластической деформации в поликристаллических металлических материалах. Структура этих границ в подавляющем большинстве не является совершенной, а содержит множество дефектов различной геометрической размерности. Современные технологии приготовления мелкозернистых материалов, такие, например, как консолидация порошков, равноканальное угловое прессование и др., неизбежно приводят к появлению остаточной пористости на границах зерен и в их тройных стыках. В настоящей работе рассматривается влияние зернограничных пор на скорость взаимного смещения смежных зерен при пластической деформации металлических образцов под действием приложенных к ним механических напряжений.
Рассмотрим фрагмент зеренной структуры, содержащий тройные стыки, представленный на рис. 1. В тройных стыках расположены цилиндрические поры, протяженные в нормальном к плоскости рисунка направлении оси z. Их сечения имеют вид окружностей. Границы считаем плоскими, вытянутыми в том же направлении и расположенными под взаимным углом π/2. Рассматриваемая зеренная структура носит название паркетной. Внешние напряжения приложены таким образом, что граница AB подвержена действию растягивающих напряжений σn, а граница A'B' – сжимающих напряжений – σn. На внутренней свободной поверхности поры напряжения отсутствуют. В установившемся режиме пластического движения верхней части образца по отношению к нижней между этими границами возникают диффузионные потоки вакансий, приводящие к перераспределению вещества. Аналогичные потоки имеются и в других тройных стыках. Пренебрегая диффузией в объем зерна, можно считать диффузионными зонами границу и сектор свободной поверхности поры AA'. Выпрямив диффузионный путь в ось x, сводим задачу к одномерной вдоль этой оси. Исходя из симметрии, достаточно рассмотреть участок OAC системы, который затем повторяется с чередованием знака источников. На рис. 2 представлен график зависимости плотности источника вакансий, соответствующий выбранному сегменту. Точки A и C имеют координаты a и a + b, где a и b – длины половины сечений границы и сектора поры.
Рис. 1. Пора в тройном стыке
Рис. 2. Плотность источника и концентрация вакансий
Диффузионная задача для избыточной концентрации вакансий на границе и свободной поверхности поры в стационарном режиме имеет вид:
, . (1)
,
,
. (2)
Здесь D1 и D2 – коэффициенты диффузии по границе зерен и по свободной поверхности, С1(х) и С2(х) – соответствующие концентрации неравновесных вакансий, g – плотность источника вакансий. Решением (1), (2) являются функции
,
. (3)
Связь избыточной С1(х) и равновесной C0 концентраций вакансий имеет вид [1, 2]:
, (4)
где Ω – объём вакансии, принятый равным атомному объему, k – константа Больцмана, T – температура.
Плотность источника вакансий можно найти, из следующих соображений [4]. За время Δt взаимное смещение зерен окажется равным υ?t (рис. 3). Объем материала, переходящего с границы A'B' на границу AB равен , количество переместившихся вакансий. За то же время источник, работающий на этом сегменте границы с диффузионной толщиной δ создаст 2gδaz?t вакансий. Приравняв оба выражения, получим
. (5)
Рис. 3. Смещение границы за время Δt
Полная сила, приложенная к сегменту AB границы равна 2σnaz. Ее можно выразить через распределенное по сегменту границы нормальное напряжение σ(x).
. (6)
Выражение (6) учитывает так называемый эффект подстройки напряжений [5, 7]. Выразив из (4) σn(x) и подставив его в (6) с учетом (3) и (5), получим
. (7)
Если рассматривать фасетированную границу зерен с плоскими фасетками, наклоненными к средней плоскости ее залегания под углами ± π/2, с порами в местах сопряжения фасеток, то ситуация аналогична рассмотренной. Выражение (7) можно переписать в этом случае в виде
, . (8)
Здесь учтено, что нормальное напряжение σn на фасетках связано со сдвиговым напряжением σ, действующим вдоль направления, проходящего через центры пор (рис. 1) как σ = 2σn. Коэффициент η–1 представляет собой обратную сдвиговую вязкость. В большинстве случаев коэффициент поверхностной диффузии значительно превышает коэффициент зернограничной диффузии. Используя соотношение , для обратной сдвиговой вязкости из (8) получим выражение
. (9)
Выражения типа (9) обычно описывают проскальзывание по межзеренной границе в случае, когда определяющим механизмом является наличие диффузионных граничных потоков вакансий [1, 6]. Описанная модель применима в случае, когда не нарушается целостность поры. Это условие выполняется при достаточно высоких температурах, когда диффузия вдоль поверхности поры настолько велика, что ее форма не изменяется при взаимном пластическом смещении зерен.