Scientific journal
International Journal of Applied and fundamental research
ISSN 1996-3955
ИФ РИНЦ = 0,593

POSSIBILITY OF SPECTROMETER GAMMA LOGGING WHEN SOLVING PROBLEMS OF OIL AND GAS GEOPHYSICS

Pak D.Y. 1 Pak Y.N. 1 Yessendossova А.N. 1 Smagulova А.B. 1
1 Каraganda State Technical University of the RK MES
1931 KB
There is considered the possibility of solving the problems of oil and gas geophysics according to gamma and spectrometer measurements of natural radioactivity of rocks caused by disintegration of uranium, thorium and potassium. There is given the characteristic of rocks at the level of natural radioactivity. There is shown the essence of gamma and spectrometer studies consisting in separate definition of uranium, thorium and potassium. It is shown that spectrometer modification of gamma logging reflects lithologic typification of rocks more contrastively. The differentiating ability of the selected gamma and spectral parameters changes depending on the type of layers. There is confirmed the informational content of using the concept «uranium equivalent» for assessing rocks shaliness. The integrated intensity of natural gamma radiation of clay minerals closely correlates with shaliness. For a number of terrigenous collectors using potassium – thorium radiation is the most preferable. It is shown that using natural gamma radiation in terms of the uranium equivalent for assessing shaliness is characterized by the best metrological characteristics.
gamma method
spectrometry of natural gamma radiation
lithologic tipification of rocks
radionuclides content
shaliness

Среди радиометрических методов исследования скважин наиболее распространенным является метод естественной радиоактивности горных пород или, как его чаще называют, гамма-метод. В его основе лежит изучение закономерностей изменения естественной радиоактивности горных пород, обусловленной присутствием главным образом урана и тория с продуктами распада, а также радиоактивного изотопа калия К40. Остальные радиоактивные элементы (Rb87, Zr96, La138, Sm147 и т. д.) имеют столь большие периоды полураспада, что при существующей распространенности в земной коре заметного вклада в суммарную радиоактивность внести не могут.

Из радиоактивных изотопов элементов, входящих в ряды урана и тория, геологическую историю существования имеют только наиболее долгоживущие родоначальники этих семейств: уран (T1/2 = 4,49·109 лет) и торий (T1/2 = 1,31·109 лет), а также продукт распада урана – радий (T1/2 = 1950 лет). Остальные короткоживущие элементы – продукты распада U и Th постоянно сопровождают последние, но сами заметных перераспределений за относительно короткий срок своей жизни не претерпевают.

На разных стадиях формирования горных пород наибольшей радиоактивностью характеризуются изверженные горные породы, наименьшей – осадочные и промежуточной – метаморфические.

Среди изверженных горных пород наибольшей радиоактивностью обладают кислые разности (граниты).

Радиоактивность основных минералов, входящих в состав осадочных горных пород, колеблется в весьма широких пределах – от сотых долей до нескольких тысяч nг-эквRа/г. Все эти минералы по радиоактивности могут быть разбиты на четыре группы.

В первую группу, характеризующуюся низкой радиоактивностью, входят основные составляющие осадочных горных пород минералы: кварц, кальцит, доломит, сидерит, ангидрит, гипс, каменная соль. Вторая группа минералов со средней радиоактивностью представлена отдельными минеральными разностями типа лимонит, магнетит, турмалин, корунд, роговая обманка, барит, олигоклаз и др. К третьей группе минералов относятся глины, слюды, полевые шпаты, калийные соли, характеризующиеся повышенной радиоактивностью, и некоторые другие минералы. В четвертую группу входят акцессорные минералы, радиоактивность которых более чем в 1000 раз превышает радиоактивность минералов первой группы.

Обычно пониженной радиоактивностью (десятые и даже сотые доли единицы пг-экв Ra/г) характеризуются хемогенные отложения (ангидриты, гипсы, каменная соль), а также чистые пески, песчаники, известняки и доломиты. Максимальной радиоактивностью (до 10-15 пг-экв Ra/г) среди осадочных пород с кларковыми содержаниями радиоактивных элементов обладают глины, глинистые и битуминозные сланцы, фосфориты, а также калийные соли.

Радиоактивность заглинизированных разностей песков, песчаников, известняков и доломитов, а также алевролитов и мергелей имеет промежуточные значения и закономерно изменяется, увеличиваясь с повышением степени их заглинизированности, а в случае карбонатных отложений – с повышением содержания терригенного материала. В целом радиоактивность карбонатных отложений, как правило, ниже и изменяется в меньших пределах, чем у песчано-глинистых пород.

В природных системах уран, торий и калий ассоциируют с целым рядом редких элементов. Урановые руды часто являются комплексными, кроме урана они могут содержать такие элементы, как золото, бериллий, литий, цезий, тантал и т. д. С другой стороны, уран и торий оказываются элементами-спутниками редких металлов на месторождениях последних. В этом случае радиоактивные элементы играют роль важных индикаторов, и раздельное определение U, Тh и К по их γ – излучению приобретает особое значение. По результатам γ – спектрометрии естественных ядерных излучений открыт ряд месторождений редких и цветных металлов. Гамма-спектральные исследования проводятся также при поисках месторождений нефти и газа. Гамма-спектрометрия применяется и в космических исследованиях, она открывает широкие перспективы картирования планет.

Излучение любого радиоактивного элемента прямо пропорционально его содержанию в объекте. Если распад данного элемента сопровождается испусканием разных по типу излучений (α- и β – частиц, γ – квантов), то для измерения содержания можно в принципе регистрировать любой тип излучения. Однако возможности аналитических методов, связанных с регистрацией α – и β – частиц, резко ограничены. У α-частиц очень мала проникающая способность, измерять их интенсивность удается, когда приготовлены специальные (тонкие и измельченные) пробы. Бета-излучение характеризуется сплошным энергетическим спектром, поэтому при исследовании объекта, в котором находится несколько изотопов, трудно определить вклад каждого в суммарную β – активность.

Гамма-излучение обладает дискретным спектром и достаточно большой проникающей способностью. Возможность надежной идентификации изотопов по их γ – излучению является важнейшим достоинством γ – спектрометрического анализа [1].

В последние годы получил развитие спектрометрический вариант гамма-метода, позволяющий оценивать количественное содержание естественных радиоактивных элементов – урана, тория и калия по его радиоактивному изотопу К40. Выявлены закономерности [2] геохимического поведения радиоактивных элементов, в частности последовательное повышение их содержания в петрографическом ряде конгломераты – песчаники – алевролиты – аргиллиты (глины). Спектрометрическая модификация гамма-каротажа имеет явное преимущество перед традиционным интегральным гамма-методом. Степень дифференциации пород по гамма-спектральным характеристикам естественных радионуклидов заметно выше. Дифференцирующая способность гамма-спектральных параметров меняется в зависимости от типа пластов. Это расширяет возможности гамма-спектрометрии естественной радиоактивности для литологической типизации пород и выделении коллекторов.

Одной из важнейших задач является определение коэффициента глинистости. В стандартном комплексе эту задачу решают, обрабатывая результаты интегрального гамма-каротажа. Однако существует большое число пластов, радиоактивность которых определяется не только глинистостью. Для этих пластов важно выявить, излучение каких радиоактивных элементов будет связано с глинистыми минералами и использовать его для определения глинистости. Знание геологического строения исследуемых отложений и содержаний естественных радиоактивных элементов в минералах позволяет выявлять те индикаторные элементы, которые можно использовать для решения поставленной задачи. Наиболее часто в глинистых минералах присутствуют калий и торий, поэтому их суммарное гамма-излучение может наиболее тесно коррелировать с глинистостью. Для определения суммарного излучения наиболее удобно использовать урановый эквивалент [3].

Под урановым эквивалентом для определяемого элемента понимается такая концентрация урана, которая дает ту же интенсивность гамма-излучения, как и излучение определяемого элемента. Для определения уранового эквивалента проводят измерения интегральной скорости счета в стандартных образцах с учетом состава промежуточных сред [4].

При аппаратурной реализации урановый эквивалент калия был определен как 1.74, тория – 0.41, а для урана он, соответственно, равен 1. Таким образом, зная концентрации всех радиоактивных элементов в породе, ее общая радиоактивность I, выраженная в Ue, определяется по формуле:

I[Ue] = 1.74*CK + 0.41* CTh + CU, (1)

где CK, CTh, CU – массовые концентрации калия, тория и урана соответственно.

Дополнительную проверку предложенного параметра проводят путем вычисления коэффициента корреляции между показаниями стандартного ГК, выполненного с заведомо хорошим метрологическим обеспечением и определенного по СГК (выраженного в урановом эквиваленте). Использование гамма-излучения в единицах уранового эквивалента не ухудшает геофизический параметр, применяемый для расчета глинистости, а заведомо лучшее метрологическое обеспечение делает его использование предпочтительнее.

pak1.tif

Результаты спектрометрического гамма-каротажа

Уран и продукты его распада содержатся не только в глинах, поэтому в ряде отложений глинистость необходимо определять, исключая излучение урана из общего гамма-излучения. Такое излучение будем называть калий-ториевым излучением (КТИ):

КТИ = 1.74*CK + 0.41*CTh (2)

Известны примеры использования КТИ терригенных коллекторов [4].

Обычно при интерпретации результатов ГК используют двойной разностный параметр:

ΔIγ =(Iγ пл – Iγmin)/(Iγmax – Iγmin) (3)

где Igпл, Igmin, Igmax – соответственно интенсивности естественного гамма-излучения против исследуемого пласта, опорного пласта неглинистых известняков и опорного пласта глинистых пород, характеризующегося на кривой ГК максимальным показанием. При этом в качестве опорных пластов выбираются ближайшие к исследуемым отложениям. Считается, что вся радиоактивность против известняков определяется излучением скважины, и это значение принимается фоновым по всему стволу. Однако, абсолютно чистых известняков не существует, они всегда содержат в себе определенное количество естественных радиоактивных элементов, и, таким образом, фоновое значение несколько завышается [4].

Тогда, вместо ΔIγ можно предложить использовать ΔКТИUe, вычисляемый по формуле:

ΔКТИUe = КТИUe,пл / КТИUe , глин, (4)

где КТИUe,пл, КТИUe, глин – калиево-ториевое излучение исследуемого пласта и глинистого пласта.

Второй опорный пласт, используемый для определения двойного разностного параметра, глинистый с известным содержанием частиц размерностью менее 0.01 мм. Против глинистых пластов обычно образуется каверна, и, следовательно, излучение скважины здесь больше, чем в случае номинального диаметра. Вымываемые глинистые частицы оседают к забою скважины и тем самым увеличивают радиоактивность более глубоких частей ствола. Учитывая вышесказанное, была опробована методика использования единого значения максимальной скорости счета.

Результаты спектрометрического гамма-каротажа (рисунок) на одной из скважин Южно-Татарского свода показали достаточно высокую эффективность метода применительно к оценке глинистости по спектрометрии естественного гамма-излучения.