Scientific journal
International Journal of Applied and fundamental research
ISSN 1996-3955
ИФ РИНЦ = 0,564

HIGH-TECH METHODS OF DIAGNOSIS OF CHROMOSOMAL PATHOLOGY

Solodkova O.A. 1 Zenkina V.G. 1
1 Pacific State Medical University
1486 KB
Timely initiation of chromosomal analysis is of great importance to identify the causes and predict many hereditary and congenital malformations. In medical cytogenetics laboratories for analysis of chromosomal abnormalities are used classical methods of cytogenetic analysis. However, in some cases, the resolution of these methods is not enough for a successful diagnosis of chromosomal abnormalities. In modern medical genetic practice classical genetic methods augmented by high-technology methods, one of which is fluorescent in situ hybridization, or the so-called FISH-technique. Currently rare study that requires analysis of chromosomes without the use of FISH. Method is used very widely – from localization of a gene to decrypt complex rearrangements across multiple chromosomes. Modern methods enhance the level of genetic counseling and effective prevention of chromosomal diseases.
chromosomal anomalies
cytogenetic and molecular cytogenetic diagnostics

Точная идентификация наследственных заболеваний часто затруднена, прежде всего из-за отсутствия при большинстве наследственных болезней патогномоничных признаков. Сложности в диагностике врожденных и наследственных нарушений связаны со сходством их клинических признаков, которые обусловлены мутациями различных генов. Диагностику наследственных заболеваний также затрудняет фенотипический полиморфизм нарушений, когда при одной и той же унаследованной генной мутации могут развиться как ее ярко выраженные, так и стертые или даже различные клинические формы. Трудности диагностики наследственных заболеваний также связаны с существованием некоторых генетических явлений, оказывающих существенное влияние на формирование клинического фенотипа, таких как, мозаицизм, экспансия аллелей, однородительское наследование (дисомия и изодисомия) и геномный импринтинг [5, 18, 20].

Важнейшая роль в диагностике наследственных болезней принадлежит лабораторным исследованиям: цитогенетическим, молекулярно-генетическим, биохимическим и др. Существенная доля пациентов, обратившихся к врачу-генетику, нуждается в уточнении диагноза с помощью специальных методов исследования. В современной медико-генетической практике классические генетические методы дополнены высокотехнологичными методами, такими как, молекулярно-генетические и молекулярно-цитогенетические, методы иммунологического анализа [10, 11].

Хромосомные болезни – это обширная группа врожденных патологических состояний, проявляющихся аномалиями развития и обусловленных нарушениями числа или структуры хромосом в соматических клетках или половых клетках. Клиническая симптоматика хромосомной патологии разнообразна, однако одним из ведущих симптомов является задержка нервно-психического развития [5].

Своевременное проведение хромосомного анализа имеет большое значение для выявления причин возникновения и прогнозирования многих наследственных и врожденных пороков развития. В России, в практическом здравоохранении исследования кариотипа проводятся с 1966 года. В лабораториях медицинской цитогенетики для анализа хромосомных аномалий используются классические методы цитогенетического анализа, базирующиеся на дифференциальном окрашивании хромосом. Эти методы позволяют выявлять все численные нарушения и значительную часть структурных хромосомных перестроек. Однако в ряде случаев разрешающей способности этих методов оказывается недостаточно для успешного проведения диагностики хромосомных аномалий, например, для точного определения границ точек разрывов при инверсиях и транслокациях, для определения происхождения дополнительного хромосомного материала при несбалансированных транслокациях [1, 13, 16].

Возможности цитогенетического анализа значительно расширились благодаря появлению и развитию новых высокоинформативных молекулярно-цитогенетических методов, главный из которых – флюоресцентная гибридизация in situ – FISH-метод (от англ. fluorescent in situ hybridization). Метод позволят проводить гибридизацию метафазных или интерфазных хромосом с различными ДНК-зондами. Зонды – клонированные последовательности или выделенные участки ДНК, комплементарные участку ДНК исследуемого кариотипа и меченные флюоресцирующими веществами. Наиболее часто используют высокоповторяющиеся последовательности ДНК центромерных или перицентромерных районов, однако в ряде случаев возникает необходимость в применении уникальных ДНК-последовательностей, таких как, космидные клоны, YAС – пробы, анонимные последовательности и др., что обеспечивает детальное исследование генетической структуры хромосомных перестроек, например маркерных хромосом, а также анализ точек разрывов хромосом в различных типах транслокаций, делеций, дупликаций, инверсий, инсерций, дицентрических и кольцевых хромосом [10, 14].

Принцип метода заключается в следующем: 1 – для изучаемой хромосомы или ее участка готовят однонитевой участок ДНК, к которому присоединяются метки – биотин или дигоксигенин (такой участок ДНК называется ДНК-зондом); 2 – на микроскопическом препарате in situ при обработке щелочью хромосомная ДНК денатурирует, т.е. разрываются водородные связи между двумя нитями ДНК; 3 – препарат обрабатывают ДНК-зондом. Поскольку нити ДНК взаимокомплементарны, зонд присоединяется к соответствующему участку хромосомы. В этом участке восстанавливается двойная спираль (ренатурация ДНК). Причем можно одновременно использовать множественные зонды к разным локусам; 4 – полученный препарат обрабатывают химическими соединениями, которые способны избирательно присоединяться к биотину или дигоксигенину; 5 – к полученным комплексам присоединяют флюоресцентные красители (двухцветная или трехцветная флюоресцентная гибридизация и т.д.); 6. – с помощью люминесцентного микроскопа окрашенные хромосомы можно увидеть на фоне неокрашенных [5, 9].

Метод FISH применяется очень широко – от локализации гена до расшифровки сложных перестроек между несколькими хромосомами. Метод можно применять для диагностики анеуплоидий в интерфазных ядрах – интерфазная цитогенетика. Метод экономичен и занимает меньше времени, чем кариотипирование дифференциально окрашенных хромосом. Неоспоримое преимущество интерфазной цитогенетики – отсутствие необходимости в приготовлении препаратов метафазных хромосом и культивировании клеток. Это снимает многие вопросы, связанные с возникновением артефактов, присущих длительным культурам клеток (полиплоидизация in vitro, возникновение и клональная селекция клеток с аберрациями кариотипа, изменение пропорций клеточных клонов при хромосомном мозаицизме) [5].

FISH на интерфазных хромосомах служит быстрым методом пренатальной диагностики трисомий по 21, 18 или 13 хромосомам или аберраций половых хромосом [12]. Например, можно получить информацию о количестве 21-х хромосом в клетках амниотической жидкости (пренатальная – дородовая диагностика синдрома Дауна у плода) – специфический ДНК – зонд для 21-ой хромосомы покажет в ядрах этих клеток или две светящиеся точки, что соответствует двум 21-м хромосомам, или три – что выявит трисомию по 21-ой хромосоме [17]. Методы молекулярной цитогенетики позволили повысить верификацию хромосомных болезней. При использовании обычных цитогенетических анализов – доля невыявленных случаев составила 10 %, при использовании FISH – технологии – снизилась до 0,9 – 1,5 % [18, 19].

Исследования, проведенные Л.С. Балевой, свидетельствуют о том, что выявление субтеломерных и теломерных перестроек с помощью молекулярно-цитогенетических методов в комплексе с классической цитогенетической диагностикой может вносить значительный вклад в диагностику недифференцированных форм умственной отсталости у детей. Частота таких перестроек, по данным разных авторов, составляет от 0,5 до 7,4 %. Корреляция теломерных и субтеломерных аномалий хромосом с определенной клинической картиной может способствовать вычленению новых хромосомных синдромов из большой группы недифференцированных форм умственной отсталости [1].

Проведено цитогенетическое и молекулярно-цитогенетическое исследование у 3593 детей с недифференцированными формами умственной отсталости, множественными врожденными пороками и/или микроаномалиями развития. В результате цитогенетического анализа авторы, помимо хромосомных аномалий, выявили хромосомные варианты и инверсии околоцентрамерного гетерохроматина хромосом 1, 9, 13-17, 21, 22 и Y. Количественная FISH с применением ДНК проб, специфически маркирующих вариабельные участки гетерохроматина хромосом, подтвердила цитогенетические данные и позволяет оценить непосредственно содержание ДНК в данном хромосомном участке и считается прямым методом исследования. До сих пор нет единого взгляда на роль вариантов околоцентромерного гетерохроматина в развитии той или иной патологии. Авторы предположили, что возможно при соответствующих обстоятельствах эти участки могут оказывать влияние на нарушение функциональной активности генов, находящихся от них в непосредственной близости, – так называемый эффект положения генов [3].

Структурные хромосомные аномалии в виде делеций и дупликаций небольшого размера составляют значительную долю хромосомной патологии среди детей с задержкой развития, аутизмом, пороками и аномалиями развития. А.Д. Колотий привела результаты лабораторной диагностики хромосомных микроперестроек у 14-ти детей с недифференцированными формами умственной отсталости, пороками и/или малыми аномалиями развития. При проведении цитогенетического исследования методами дифференциального окрашивания хромосомная патология у этих детей не была выявлена. Данные случаи сложны для цитогенетической диагностики, поскольку могут быть связаны с микроаномалиями кариотипа, выявление которых возможно только с применением молекулярно-цитогенетических методов исследования. Применение специального алгоритма анализа хромосомных нарушений, включающего гибридизацию на хромосомах in situ позволило выявить микроаномалии кариотипа и определить этиологические причины хромосомной патологии у всех 14 детей. Применение современных диагностических технологий позволяет не только повысить эффективность молекулярно-цитогенетической диагностики за счет выявления микронарушений генома у детей с нарушениями психики, но также выявлять новые нозологии из недифференцированных (идиопатических) форм умственной отсталости [7].

Анеуплоидии гоносом являются наиболее распространенными хромосомными синдромами после трисомии хромосомы 21. Частота их составляет не менее 0,3 % в общей популяции. При этих синдромах довольно часто выявляются мозаичные формы, когда в клетках одной или различных тканей присутствуют две или более клеточные линии с разным хромосомным набором. Основной задачей при исследовании мозаичных форм численных хромосомных аномалий является эффективное определение доли клеток аномального клона для прогнозирования течения болезни и корректного медико-генетического консультирования семьи. Особые сложности возникают при выявлении низкопроцентного мозаицизма, при котором одна из клеточных линий присутствует в 10 % клеток и менее. Результаты исследований Демидовой И.А. показывают, что в этом случае традиционный цитогенетический метод для постнатальных исследований кариотипа малоэффективен. Более того, при повторных цитогенетических исследованиях в процессе культивирования может наблюдаться селективный отбор клеток с численными аномалиями хромосом или без них вплоть до полной элиминации одного из клонов. Однако отсутствие анеуплоидных клеток в последующих исследованиях не говорит об отсутствии анеуплоидии. Выявление «скрытого» хромосомного мозаицизма с помощью современных молекулярно-цитогенетических методов может объяснить причину заболевания, определить прогноз и провести лечебную коррекцию, особенно при мозаичных формах численных аномалий половых хромосом [4].

Хромосомный мозаицизм чаще наблюдается при численных хромосомных аномалиях в отличие от структурных, что было установлено многими исследованиями. Результаты исследования Колотий А.Д. показали, что после цитогенетического анализа хромосомный мозаицизм наблюдался у 3,4 % от всех изучаемых больных. После проведения молекулярно-цитогенетического исследования доля случаев с хромосомным мозаицизмом составила 5,9 %. Установлено, что выявление возможного мозаицизма молекулярно-цитогенетическими методами диагностики требуется пациентам со стертой клинической картиной таких хромосомных синдромов, как Дауна, Эдвардса, Шерешевского-Тернера, трисомии Х, а также девочкам с дисгенезией гонад при нормальном кариотипе, определенном цитогенетическим методом. Своевременная эффективная диагностика мозаичных форм хромосомных аномалий способствует лечебной коррекции, особенно при мозаичных формах аномалий половых хромосом [6, 8, 15].

В работе Берешевой А.К. представлено сообщение о 8-летней девочке с мозаичной формой синдрома Шерешевского-Тернера. Цитогенетическое исследование показало мозаичную форму синдрома при наличии клона клеток с кольцевой хромосомой Х и отсутствии нормального клона. Методом FISH подтвердили моносомию хромосомы Х и обнаружили дополнительный клон клеток с тремя хромосомами Х. Нормальный клон клеток с кариотипом 46,ХХ не выявлен. Multicolor banding (многоцветовое окрашивание) показало делецию псевдоаутосомного участка в коротком плече и делецию концевых участков короткого и длинного плеч кольцевой хромосомы Х во всех клетках. Таким образом, применение высокоразрешающих молекулярно-цитогенетических методов позволило определить потерю псевдоаутосомного участка в Хp22.32, ответственного за низкий рост, черепно-лицевые, скелетные аномалии, и критического участка Xp22.1, который ведет к симптомокомплексу синдрома Шерешевского-Тернера. Использование современных молекулярно-цитогенетических методов способствовало повышению уровня медико-генетического консультирования, что обеспечивает назначение корректного симптоматического лечения [2, 8].

В работе Минайчевой Л.И. отражено применение молекулярно-цитогенетического метода в клинической практике. Беременная женщина 30 лет обратилась в Генетическую клинику института для проведения эхографического исследования плода на 21 неделе гестации. При обследовании был выявлен порок развития сердечно-сосудистой системы. Для исключения хромосомной патологии было проведено инвазивное вмешательство (кордоцентез) и получен плодный материал. Стандартный цитогенетический анализ (G-окраска) не выявил структурных и числовых нарушений – 46, XY. При осмотре врачом-генетиком в возрасте 3-х месяцев выявлены множественные стигмы дизэмбриогенеза – эпикант, короткий нос с открытыми вперед ноздрями, широкая верхняя челюсть, микрогнатия, оттопыренные уши, отмечалась мышечная гипотония и прогрессирующая деформация позвоночника, что позволило заподозрить наличие генетической патологии и провести дополнительное обследование с использованием молекулярно-цитогенетических методов. Методом FISH была выявлена микроделеция в хромосоме 7 в критической области синдрома Вильямса. Верификация диагноза у пациента в достаточно раннем возрасте позволила скорректировать план наблюдения и разработать индивидуальный комплекс профилактических, лечебных и реабилитационных мероприятий [9].

Заключение

Таким образом, флюоресцентная гибридизация in situ в настоящее время является одним из наиболее эффективных и широко используемых методов молекулярной цитогенетики, позволяет установить и уточнить диагноз хромосомной патологии, что способствуют повышению уровня генетического консультирования, а также эффективной профилактике хромосомных заболеваний.