Волны напряжений различной природы, распространяясь, в деформируемом теле взаимодействуют, друг с другом, что приводит к образованию новых областей возмущений, перераспределению напряжений и деформаций.
После трехкратного или четырехкратного прохождения и отражения волн напряжений в теле процесс распространения возмущений становится установившимся, напряжения и деформации усредняются, тело находится в колебательном движении.
В работе рассматривается техническое средство в виде вертикальной полости для управления сейсмическим напряженным состоянием в упругой полуплоскости. Поставленная задача реализуется с помощью моделирования уравнений волновой теории упругости.
Постановка задачи волновой теории упругости
Для решения задачи о моделировании упругих нестационарных волн напряжений в деформируемых областях сложной формы рассмотрим некоторое тело Г в прямоугольной декартовой системе координат XOY, которому в начальный момент времени сообщается механическое нестационарное импульсное воздействие.
Предположим, что тело Г изготовлено из однородного изотропного материала, подчиняющегося упругому закону Гука при малых упругих деформациях.
Точные уравнения двумерной (плоское напряженное состояние) динамической теории упругости имеют вид
, ,
,
,
, ,
, , ,
, (1)
где , и – компоненты тензора упругих напряжений; , и – компоненты тензора упругих деформаций; u и v – составляющие вектора упругих перемещений вдоль осей OX и OY соответственно; – плотность материала; – скорость продольной упругой волны; – скорость поперечной упругой волны; – коэффициент Пуассона; E – модуль упругости; – граничный контур тела Г.
Систему (1) в области, занимаемой телом Г, следует интегрировать при начальных и граничных условиях.
В работах [1–10] приведена информация о моделировании нестационарных волн напряжений в деформируемых телах сложной формы с помощью рассматриваемого численного метода, алгоритма и комплекса программ.
Некоторая информация о верификации моделирования нестационарных волн напряжений в деформируемых телах с помощью рассматриваемого численного метода, алгоритма и комплекса программ приведена в следующих работах [2–6].
Разработка методики и алгоритма для решения волновых задач
Для решения двумерной плоской динамической задачи теории упругости с начальными и граничными условиями (1) используем метод конечных элементов в перемещениях. Задача решается методом сквозного счета, без выделения разрывов. Основные соотношения метода конечных элементов получены с помощью принципа возможных перемещений.
Принимая во внимание определение матрицы жесткости, вектора инерции и вектора внешних сил для тела Г, записываем приближенное значение уравнения движения в теории упругости
, ,
, (2)
где – диагональная матрица инерции; – матрица жесткости; – вектор узловых упругих перемещений; – вектор узловых упругих скоростей перемещений; – вектор узловых упругих ускорений; – вектор внешних узловых упругих сил.
Соотношение (2) система линейных обыкновенных дифференциальных уравнений второго порядка в перемещениях с начальными условиями.
Таким образом, с помощью метода конечных элементов в перемещениях, линейную задачу с начальными и граничными условиями (1) привели к линейной задаче Коши (2).
Для интегрирования уравнения (2) конечноэлементным вариантом метода Галеркина приведем его к следующему виду
, . (3)
Интегрируя по временной координате соотношение (3) с помощью конечноэлементного варианта метода Галеркина, получим двумерную явную двухслойную конечноэлементную линейную схему в перемещениях для внутренних и граничных узловых точек
,
, (4)
где – шаг по временной координате.
Основные соотношения метода конечных элементов в перемещениях получены с помощью принципа возможных перемещений и конечноэлементного варианта метода Галеркина.
Определяем условия на отношение шагов по временной координате и по пространственным координатам, а именно
, (5)
где – длина стороны конечного элемента.
Для исследуемой области, состоящей из материалов с разными физическими свойствами, выбирается минимальный шаг по временной координате (5).
На основе метода конечных элементов в перемещениях разработаны алгоритм и комплекс программ для решения линейных плоских двумерных задач, которые позволяют решать задачи при нестационарных волновых воздействиях на сложные системы. При разработке комплекса программ использовался алгоритмический язык Фортран-90.
Моделирование сейсмических волн в упругой полуплоскости с полостью
Расчеты проводились при следующих единицах измерения: килограмм-сила (кгс); сантиметр (см); секунда (с). Для перехода в другие единицы измерения были приняты следующие допущения: 1 кгс/см2 ≈ 0,1 МПа; 1 кгс с2/см4 ≈ 109 кг/м3.
Рассмотрим задачу о воздействии плоской продольной сейсмической волны параллельной свободной поверхности упругой полуплоскости с полостью (соотношение ширины к высоте один к двенадцати) (рис. 1).
Рис. 1. Постановка задачи о воздействии плоской продольной сейсмической волны на упругую полуплоскость с полостью (соотношение ширины к высоте один к двенадцати)
Рис. 2. Изменение упругого контурного напряжения во времени в точке А1: 1 – в задаче без полости; 2 – в задаче с полостью (соотношение ширины к высоте один к двенадцати)
Рис. 3. Изменение упругого контурного напряжения во времени в точке А2: 1 – в задаче без полости; 2 – в задаче с полостью (соотношение ширины к высоте один к двенадцати)
Рис. 4. Изменение упругого контурного напряжения во времени в точке А3: 1 – в задаче без полости; 2 – в задаче с полостью (соотношение ширины к высоте один к двенадцати)
Рис. 5. Изменение упругого контурного напряжения во времени в точке А4: 1 – в задаче без полости; 2 – в задаче с полостью (соотношение ширины к высоте один к двенадцати)
От точки F параллельно свободной поверхности ABEFG приложено нормальное напряжение , которое при () изменяется линейно от 0 до P, а при равно P(, МПа (1 кгс/см2)). Граничные условия для контура GHIA при . Отраженные волны от контура GHIA не доходят до исследуемых точек при . Контур ABCDEFG свободен от нагрузок, кроме точки F. Расчеты проведены при следующих исходных данных:
; Δt=1,393•10–6 с; E=3,15•104 МПа (3,15•105 кгс/см2); ; r=0,255•104 кг/м3 (0,255•10–5 кгс•с2/см4); Cp= 3587 м/с; Cs=2269 м/с.
Решается система уравнений из 59048 неизвестных.
Результаты расчетов для контурного напряжения во времени n получены в точках A1–A4 (рис. 1), находящихся на свободной поверхности упругой полуплоскости. На рис. 2–5 приведены контурные напряжения в точках A1–A4 во времени n.
Вывод
Полученные результаты можно оценить как первое приближение к решению сложной комплексной задачи, о применении полостей для увеличения безопасности различных сооружений при нестационарных волновых сейсмических воздействиях, с помощью численного моделирования волновых уравнений теории упругости.
Библиографическая ссылка
Мусаев В.К. ОПРЕДЕЛЕНИЕ СЕЙСМИЧЕСКИХ НЕСТАЦИОНАРНЫХ УПРУГИХ ВОЛН НАПРЯЖЕНИЙ В ПОЛУПЛОСКОСТИ С ПРЯМОУГОЛЬНОЙ ВЕРТИКАЛЬНОЙ ПОЛОСТЬЮ (СООТНОШЕНИЕ ШИРИНЫ К ВЫСОТЕ ОДИН К ДВЕНАДЦАТИ) // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 11-3. – С. 403-407;URL: https://applied-research.ru/ru/article/view?id=10506 (дата обращения: 07.09.2024).