В различных областях океанологии при проведении исследований дна нашла широкое применение фото, а позже видеосъёмка. Анализ визуальных изображений поверхности дна используется в геологических, геоморфологических, эколого-биологических и даже гидрофизических исследованиях. В СССР начало широкому применению подводной и глубоководной фотосъемки для научных исследований положил сотрудник Института океанологии им. П.П. Ширшова Никита Львович Зенкевич [1]. Им получены более четырёх тысяч фотографий дна, в том числе в глубоководных желобах, на глубинах более 7 км. Конструкция фотоустановки Н.Л. Зенкевича оказалась настолько удачной, что применялась даже в начале XXI века [2]. Фотографии, полученные им и его сотрудниками, использовались в исследованиях Н.А. Айбулатова, В.Г. Богорова, А.В. Живаго, Л.И. Москалева, Г.Б. Удинцева и др. Основные требования к набору дополнительных данных, необходимых для полноценной научной интерпретации изображений дна, определились в самом начале применения подводной фотосъёмки. Развитие современных технологий позволяет расширить круг параметров, который фиксируется при производстве подводной видеосъёмки, организовать более удобный доступ исследователя к различной вспомогательной информации, характеризующей материалы видеосъёмки дна.
Для маршрутных глубоководных видео наблюдений в ИОРАН разработан буксируемый необитаемый подводный аппарат (БНПА) «Видеомодуль», который уже на протяжении 3 лет, совершенствуясь, эксплуатируется в Арктических экспедициях. В 2015 г, в 63 рейсе научно-исследовательского судна (НИС) «Академик Мстислав Келдыш» началось использование БНПА «Видеомодуль» для изучения экосистем донных сообществ Карского моря, прежде всего количественной оценки пространственного распределения представителей донной фауны [3].
БНПА представляет собой пространственную раму из нержавеющей стали, внутри которой на кронштейнах закреплены прочные корпуса с электронным оборудованием, элементами питания и видеокамерами, а также установлены гидрофизический зонд SBE и подводный гамма-спектрометр РЭМ-26. Корпуса соединены между собой подводными кабелями с герметичными электрическими разъемами. Рама имеет узел регулируемой подвески БНПА к кабель-тросу и 12 грузов для его устойчивого заглубления и балансировки по дифференту. Фотография аппарата приведена на рис. 1, основные технические характеристики – в таблице. Буксируемый носитель связан с судном-носителем с помощью кабель-троса с волоконно-оптической линией связи (ВОЛС). В свою очередь, на судне находится лебедка с вращающимся оптическим переходом и аппаратура управления, контроля и сбора данных, поступающих от погружного блока и других судовых систем (навигации, эхолота и т.п.). Использование оптического волокна обеспечивает абсолютную защищенность линии связи от электромагнитных, электростатических помех и атмосферного электричества, позволяет передавать значительно больший объём информации на большие расстояния.
При проектировании и изготовлении НПБА «Видеомодуль» потребовалось выявление перечня параметров, которые, кроме непосредственно видеозаписи дна, необходимо фиксировать при производстве подводной видеосъёмки, чтобы полученные данные удовлетворяли современным требованиям, предъявляемым к видеоматериалам, используемым для количественного анализа пространственного распределения различных представителей донных сообществ. На основе опыта, имеющегося в ИО РАН [4], публикаций в российской [5–7] и иностранной [8] печати, консультаций с специалистами был определен перечень параметров, необходимых для интерпретации материалов подводной видеосъёмки, используемых при биолого-экологических исследованиях. В качестве этих параметров были выбраны:
– координаты (широта. долгота и глубина);
– масштаб изображения (высота камеры над грунтом);
– ориентация видеокадра по сторонам света (курс движения буксируемого тела НПБА);
– гидрофизические параметры (температура и соленость);
– углы наклона снимка относительно вертикали;
– специальные параметры (например, данные гамма-спектрометра, что может быть актуально при работах в некоторых заливах Новой Земли [9]).
Кроме параметров, относящихся непосредственно к отдельному снимку, необходимо знать плановое и высотное положение трансекты, профиль гидрофизических параметров (температура, соленость) по разрезу.
Выбранные параметры можно разделить по следующим критериям: однозначно необходимые и те, которые могут повысить качество и удобство интерпретации подводной видеосъёмки, но в случае больших технических сложностей при их реализации от их фиксации можно отказаться. К первым, безусловно, относятся координаты и глубина съёмки, масштаб изображения. С другой стороны, можно разделить параметры на те, которые необходимы в реальном времени, и те, которые нужны при постобработке. Перечисление критериев, по которым делятся необходимые параметры, можно продолжить. Причем в различных условиях приоритет этих критериев может меняться. Поэтому было принято решение о блочном представлении данных, получаемых с помощью НПБА «Видеомодуль». В первый блок входят видеозаписи трёх камер – высокого разрешения, обзорной и перспективной в стандартных форматах видеозаписи. Видеокамера высокого разрешения выполняет плановую съёмку и по её данным проводятся количественные определения (измерение) размеров представителей донной фауны. Две другие в основном служат для пилотирования подводного аппарата, и их данные могут служить дополнением к видеозаписи основной камеры в случае необходимости. Во второй блок входят навигационные данные о местоположении судна, глубине места, курсе и углах наклона буксируемого тела. В третий – данные гидрофизического зонда, установленного на подводном аппарате. В последующие блоки входит информация о наклонных дальностях до аппарата, данные гамма-спектрометра и т.д. Количество блоков не ограничено и может увеличиваться при необходимости. В ряде случаев выявленные параметры потребовали изменения аппаратной части подводного аппарата и установки дополнительных функциональных блоков. В процессе эксплуатации НПБА «Видеомодуль» также вносились необходимые изменения в систему сбора и представления данных и в ее аппаратное обеспечение.
Рис. 1. БНПА «Видеомодуль»
Основные технические характеристики
№ п/п |
Характеристика |
Значение |
1 |
Масса, кг |
550 |
2 |
Габариты, м |
2.1 х 1.0 х 0.7 |
3 |
Максимальная рабочая глубина, м |
6000 |
4 |
Тип буксирной линии |
Кабель-трос КГ1х3Е-70-60-3 |
5 |
Информационный канал связи |
Оптическое волокно (3) |
6 |
Информационный интерфейс |
RS232 |
7 |
Энергосистема |
Бортовая аккумуляторная батарея |
8 |
Напряжение/емкость батареи В/Ачас |
12/50 |
9 |
Автономность не менее, час |
2 |
10 |
Телекамера 1 |
Цв. цифровая IP HD BeWard BD3270Z |
11 |
Телекамера 2 |
Цв. аналоговая Pal EC-007A |
12 |
Телекамера 3 |
Цв. комбинированная HD XiaomiYi |
13 |
Источник заливающего света (ИЗС) |
Светодиодная матрица Epistar XY-J45 |
14 |
Максимальная электрическая мощность ИЗС, Вт |
180 = (30*6шт) |
15 |
CTD-зонд |
SBE 19plus |
16 |
Датчик глубомера |
MLH 08KPSB01A Honeywell |
17 |
Гамма-спектрометр |
РЭМ-26 |
18 |
Система оптического масштабирования |
М65051 US-Lasers |
В настоящее время, по результатам экспедиции 69 рейса НИС «Академик Мстислав Келдыш», проведенной в августе – октябре 2017 г., описываемая методика выглядит следующим образом. В реальном времени при буксировке «Видеомодуля» параллельно фиксируются координаты судовой и автономной антенн систем GPS-ГЛОНАСС; данные датчика давления, пересчитанные в глубину; курс, крен и дифферент НПБА (определяются с помощью электронного компаса-инклинометра Rion DCR 260B). Эти данные пишутся в протокол погружения и в специальный файл титров (рис. 2), которые, по желанию оператора, можно выводить на видеоизображения дна. Кроме этого, в отдельные файлы пишутся данные судового эхолота и гидрофизического зонда SBE-19, которые отображаются в реальном времени на отдельных мониторах. Масштаб изображения видеокадров можно определить с помощью лазерных указателей масштаба, представляющих из себя лазерные мини-модули в герметичных корпусах, размещенные на постоянной и известной базе. Таким образом, первичные данные представляют три или более блоков информации, синхронизированных по времени. Первый блок содержит данные видеокамер, второй навигационную информацию, а именно: координаты судна, глубину, на которой находится буксируемая платформа подводного аппарата, курс, крен дифферент. Третий блок содержит батиметрическую информацию, полученную с помощью судового эхолота, четвертый – гидрофизические данные. В пятом и последующих блоках представлена информация, получаемая с дополнительных устройств, например с гамма-спектрометра. Далее, данные второго блока корректируются в режиме постобработки. Вычисляются координаты положения буксируемого тела с учетом наклонной дальности, определенной по маяку-ответчику во время буксировки и офсетов антенн спутниковой навигации. Далее, вычисляются моменты времени, в которые видеокамера располагалась на заданных расстояниях от начала трансекты вдоль генерального направления маршрута. Для этих моментов производится «нарезка» видеозаписи на отдельные кадры, их масштабирование и ориентирование (разворот, чтобы при наложении на планшет север находился сверху, аналогично географической карте). Первоначально планировалось, что эти кадры будут трансформированы в соответствии с углами крена и дифферента, но практика показала, что эти углы малы и не оказывают практического влияния на метрические свойства изображения. В результате для окончательной обработки специалист получает следующие данные: видеозапись видеокамеры высокого разрешения с титрами и масштабными метками, план и профиль движения НПБА (видеокамеры) в определенном масштабе с временными отметками (рис. 3), «нарезку» кадров видеозаписи через заданный пространственный интервал, график изменения гидрофизических параметров по траектории движения подводного аппарата с привязкой по времени (рис. 4).
Используя представленные таким образом данные специалист-биолог может определять изменение количества и размеров интересующих его животных, рассчитывать площадь покрытия дна донными организмами и определять их суммарную биомассу на единицу площади. Важным условием при использовании таких определений является сопоставление данных, полученных с помощью видеосредств с данными традиционных методов применяемых в морской биологии – дночерпательными пробами и результатами лова донным тралом. Нельзя не сказать еще об одном существенном ограничении при выполнении подобных измерений по материалам видеосъёмки, которые вызваны оптическими свойствами (прежде всего прозрачностью) воды в местах производства наблюдений. В ряде случаев, например в некоторых заливах Новой Земли и приустьевых участках, прозрачность воды не позволяет обнаружить и идентифицировать на видеоматериалах мелкие организмы, что может ухудшить достоверность определений.
Рис. 2. Пример видеоизображения дна, полученного НПБА «Видеомодуль» в 69 рейсе НИС «Академик Мстислав Келдыш» в Карском море с титрами (в левом нижнем углу) и масштабными метками (две красные точки в центре)
Рис. 3. Пример плановой привязки видеоизображений дна, полученных НПБА «Видеомодуль» в 66 рейсе НИС «Академик Мстислав Келдыш» в Карском море
Рис. 4. Аномалии температуры – солености (соответственно показаны красным и зеленым цветами) на ст. 5606, 69 рейс НИС «Академик Мстислав Келдыш», зафиксированные зондом SBE-19 при выполнении видеоразреза НПБА «Видеомодуль»
Описанная методика представления данных видеосъёмки поверхности дна использовалась в 2015–2017 годах в 63, 66 и 69 рейсах НИС «Академик Мстислав Келдыш» в Российской Арктике, где она показала свою эффективность при эколого-биологических исследованиях, в частности при определении пространственного распределения плотности расселения донных организмов.
Работа выполнена при поддержке РФФИ (проекты Кар_а 14-05-05001, Рго_а 13-05-41001), а также РНФ (проект 14-50-00095).
Автор выражает благодарность руководителям экспедиции – чл.-корр., д.б.н. М.В. Флинту, д.т.н. Н.А. Римскому-Корсакову, С.Г. Пояркову за помощь и поддержку, предоставление возможности участия в рейсах и выполнения работы, С.В. Галкину, В.О. Мокиевскому, А.А. Удалову, А.А. Недоспасову, Я.И. Белевитневу, И.М. Анисимову и другим коллегам, совместно с которыми проводились работы с БНПА «Видеомодуль» в Институте и экспедициях.
Библиографическая ссылка
Пронин А.А. МЕТОДИКА СБОРА И ПРЕДСТАВЛЕНИЯ МАТЕРИАЛОВ ВИДЕОСЪЁМКИ ПОВЕРХНОСТИ ДНА С ПОМОЩЬЮ НЕОБИТАЕМОГО ПОДВОДНОГО БУКСИРУЕМОГО АППАРАТА «ВИДЕОМОДУЛЬ» // Международный журнал прикладных и фундаментальных исследований. – 2017. – № 12-1. – С. 142-147;URL: https://applied-research.ru/ru/article/view?id=11980 (дата обращения: 07.12.2024).