Научный журнал
Международный журнал прикладных и фундаментальных исследований
ISSN 1996-3955
ИФ РИНЦ = 0,593

ЛЕКЦИЯ 2. МОРФОФУНКЦИОНАЛЬНЫЕ И МЕТАБОЛИЧЕСКИЕ ОСОБЕННОСТИ ГРАНУЛОЦИТОВ ПЕРИФЕРИЧЕСКОЙ КРОВИ

Чеснокова Н.П. 1 Понукалина Е.В. 1 Невважай Т.А. 1 Полутова Н.В. 1 Бизенкова М.Н. 1
1 ГБОУ ВПО «Саратовский государственный медицинский университет им. В.И. Разумовского Минздрава России»
1. Гематология / Рукавицын О.А., Павлов А.Д., Морщакова Е.Ф. и др. Под ред. О.А. Рукавицына. – Изд–во СПб.: ООО «Д.П.», 2007. – 912 с.
2. Гематологический атлас. С. Луговская, М.Е. Почтар. 3–е издание. – Москва – Тверь. ООО «Изд-во Триада», 2011. – 368 с.
3. Жаворонок Т.В. Участие системы глютатиона в поддержании функционального состояния нейтрофилов при остром воспалении // Бюллетень сибир. медицины. – 2010. – № 5. – С. 28–32.
4. Зайчик А.Ш. Механизмы развития болезней и синдромов // А.Ш. Зайчик, Л.П. Чурилов. – СПб.: ЭЛБИ, 2002. – Т. 3. – 507 с.
5. Коротина О.Л., Генералов И.И. Нейтрофильные внеклеточные ловушки: механизмы образования, функции // Иммунология, аллергология, инфектология. – 2012. – № 4. – С. 23–32.
6. Нормальная физиология: учебник [Н.А. Агаджанян, Н.А. Барабаш, А.Ф. Белов и др.] / Под ред. проф. В.М. Смирнова. – 3-е изд. – М.: Издательский центр «Академия», 2010. – 480 с.
7. Нормальная физиология: учебник / Под ред. А.В. Завьялова, В.М. Смирнова. – 2011. – 368 с.
8. Пинегин Б.В., Маянский А.Н. Нейтрофилы: структура и функция // Иммунология. – 2007. – Т. 28, № 6. – С. 374–382.
9. Тополян А.А. Клетки иммунной системы / А.А. Тополян, И.С. Фрейдлин. – СПб.: Наука, 2000. – 231 с.
10. Шиффман Ф.Дж. Патофизиология крови / Пер. с англ. – М.: Изд-во «БИНОМ», 2009. – 448 с.
11. Behkendt J.H., Ruiz A., Zahner H., Taubert A., Hermosilla C. Neutrophil extracellular trap formation as innate immune reactions against the apicomplexan parasite Eimeria bovis // Veterinary Immunology and Immunopathology. – 2010. – V. 133 (1). – Р. 1–8.

Гранулоциты крови включают в себя нейтрофильные лейкоциты, а также эозинофилы и базофилы. Как известно, доминирующей популяцией гранулоцитов в периферической крови являются нейтрофильные лейкоциты, диапазон содержания которых в периферической крови постоянно изменяется и составляет в настоящее время в среднем от 47 до 75 % в лейкоцитарной формуле.

Менее представительной популяцией клеток гранулоцитарного ряда в периферической крови являются эозинофилы, относительное содержание которых в лейкоцитарной формуле колеблется от 1 до 5 %.

И крайне скромно представлено содержание в крови базофилов, максимальный уровень которых составляет не более 1–2 %.

Касаясь морфологических особенностей нейтрофилов и их биологической значимости следует отметить, что эти клеткиотносят к категории полиморфноядерных лейкоцитов, созревание которых в костном мозге сопряжено со значительными изменениями структуры, метаболизма и свойств. Динамика морфологических изменений заключается в постепенном уменьшении ядра с увеличением цитоплазматически-ядерного отношения, исчезновением ядрышек, сегментацией ядер нейтрофилов. Зрелые сегментоядерные нейтрофилы задерживаются в синусах костного мозга в течение 3–4 дней. Количество депонированных в синусах костного мозга нейтрофилов превышает число циркулирующих клеток в 10–20 раз. Изменение процентных взаимоотношений между циркулирующими и депонированными нейтрофилами лежит в основе всех перераспределительных лейкоцитозов и лейкопений. Одна из отличительных характеристик этих реакций является их кратковременность, наличие четкого этиологического фактора, отсутствие изменений функциональной активности гранулоцитов. Время их нахождения в кровеносном русле очень мало (в среднем 6–8 часов), так как эти клетки быстро мигрируют в ткани. Покинувшие сосудистое русло нейтрофилы в кровоток не возвращаются и разрушаются в тканях. Часть нейтрофилов удаляется из организма через желудочно-кишечный тракт.

Зрелые сегментоядерные нейтрфилы представляют собой клетки округлой формы, диаметром 7–12 мкм. Ядро клеток состоит из 3–4 сегментов, соединенных тонкими нитями хроматина. При окраске по Романовскому ядро окрашивается в сине-фиолетовый цвет, а цитоплазма – в розовый.

У нейтрофилов мало митохондрий, рибосом, комплекс Гольджи невелик, эндоплазматический ретикулум редуцирован. Главный источник энергии – гликоген, основная форма метаболизма – гликолиз. В процессе фагоцитоза и метаболического респираторного взрыва при участии гексозомонофосфатного шунта потребляется до 30 % метаболизированной глюкозы. Кратковременность существования нейтрофилов (до 4-х суток) обусловлена генетически детерменированным апоптозом.

У практически здоровых людей иногда выявляются и врожденные изменения структуры ядра нейтрофилов, среди них отмечают наличие так назывемой пельгеровской аномалии лейкоцитов, характеризующейся преобладанием нейтрофилов с двухлопастным ядром, а также наличием клеток с недостаточно четко разграниченными сегментами ядра, напоминающим палочкоядерные нейтрофилы. Пельгеровская аномалия – часто встречающийся гематологический признак; наблюдается у одного из 1000 человек. Аномалия наследуется по доминантному типу. Значительно реже встречается врожденная гиперсегментация ядер нейтрофилов, при которой в ядрах имеется более 5 сегментов. Описан врожденный макроцитоз нейтрофилов, когда средний размер клетки составляет около 17 мкм. При всех этих изменениях функциональная активность нейтрофилов существенно не изменяется, и аномалии обнаруживаются случайно.

В цитоплазме нейтрофилов содержится большое количество мелких гранул двух типов. Первичные гранулы составляют 30 % всех гранул, содержат набор ферментов, главным обазом гидролитических, и являются типичными лизосомами. Лизосомы характеризуются высоким содержанием миелопероксидазы, катионных белков, мукополисахаридов. В лизосомах локализована примерно 1/3 лизоцима, обеспечивающего деполимеризацию мукополисахаридов бактериальных клеток, способствующего последующему гидролитическому расщеплению бактерий при участии лизосомальных ферментов. В случае развития фагоцитоза нейтрофилы активно выделяют содержимое лизосом в окружающую среду, где проявляются эффекты лизосомальных гидролаз. Вторичные гранулы образуют типичную специфическую зернистость нейтрофилов и содержат гликоген, липиды, ряд ферментов, а также лизоцим.

Характерной особенностью метаболизма нейтрофилов является их способность получать энергию за счет анаэробного гликолиза, что обеспечивает их функции даже в крайне неблагоприятных условиях (в тканях, бедных кислородом, воспалительных, отечных, плохо кровоснабженных). Основным субстратом для гликолиза в нейтрофильных лейкоцитах является глюкоза, в меньшей степени – галактоза и фруктоза, а также гликоген. Расщепление глюкозы в нейтрофилах может осуществляться по пентозофосфатному пути. Роль дыхания в жизнедеятельности нейтрофилов невелика. В нейтрофилах имеется достаточный набор ферментов гликолиза, пентозо-фосфатного окисления глюкозы, причем энергия гликолиза используется для реализации фагоцитарной и двигательной активности, а пентозофосфатный путь окисления глюкозы играет роль в обеспечении реакций синтеза жирных кислот. Последние, как и углеводы, используются нейтрофилами в качестве источников энергии.

Нейтрофильные лейкоциты, наряду с друими лейкоцитарными элементами, являются центральным звеном неспецифической резистентности организма. От их деятельности зависит интенсивность фагоцитоза и продукция гумолальных неспецифических факторов защиты – комплемента, лизоцима, интерферона, обеспечивающих бактерицидную активность сыворотки крови, а также миелопероксидазы, лактоферрина, катионных белков.

Способность к фагоцитозу нейтрофильных лейкоцитов обусловлена рядом особенностей, в частности высокой двигательной активностью. Нейтрофилы первыми прибывают в место повреждения тканей за счет целенаправленного движения клеток к объектам фагоцитоза (хемотаксис).

Амебовидная подвижность обусловлена образованием «двигательных» псевдоподий, а также, по данным электронно-микроскопических исследований, наличием в нейтрофильных лейкоцитах актомиозиновых структур.

Направленное движение индуцируется рядом хемотаксических факторов или соединений. Значительная их часть выделяется бактериями. Эти факторы могут иметь различную молекулярную массу от 2000 до 60000 D. Хемотаксические факторы с низкой молекулярной массой оказывают непосредственное хемотаксическое действие на нейтрофилы. Факторы с большой молекулярной массой опосредуют хемотаксический эффект через сывороточные белки (кофакторы). Хемотаксической активностью обладают и некоторые продукты разрушения клеток, а также кинины, каллекреины, пептиды, образующиеся при расщеплении третьего (С3) и пятого (С5) компонентов комлемента. Хемотаксические факторы вызывают уменьшение отрицательного заряда поверхности нейтрофила, что облегчает их адгезию и агглютинацию.

Активированный нейтрофил имеет около 120 000 рецепторов для Fc-фрагмента IgG, формирующих кластеры на клеточной поверхности и около 40 000 рецепторов для фракции комплемента (С3в). Некоторые частицы могут прикрепляться к поверхности фагоцита без участия этих рецепторов.

Реакции фагоцитоза неразрывно связны с деятельностью кислородзависимы антимикробных систем, сопровождаются увеличением поглощения кислорода и выработкой перекиси водорода, супероксид-анион-радикала, гидроксильных радикалов. Активность данной системы киллинга бактерий сопряжена с ферментом миелопероксидазой.

Существуют также кислороднезависимые антимикробные системы, проявляющие бактерицидное действие в фагосомах при отсутствии кислорода. К компонентам этой системы относятся: закисление среды, лизоцим, лактоферрин, катионные белки и некоторые другие соединения.

Касаясь характеристики лизоцима, необходимо отметить, что это низкомолекулярный катионный белок, расщепляющий В-гликозидные связи мукополисахаридов, обладает сильным антимикробным действием в отношении многих бактерий, а особенно грамположительных. В нейтрофильных лейкоцитах лизоцим не синтезируется, а только депонируется.

Наряду с фагоцитозом защитная функция нейтрофилов обеспечивается выделением в окружающую среду лизосомальных энзимов с гидролитическими свойствами, катионных белков, молочной кислоты, которое оказывают бактериостатическое и бактериолитическое действие, участвуют в разрушении поврежденных при воспалении тканей и клеток организма.

Участие нейтрофильных лейкоцитов в механизмах неспецифической резистентности обеспечивается и фактором противовирусной защиты – интерфероном.

Помимо противовирусного эффекта интерферон оказывает антипролиферативное и противоопухолевое действие, подавляет бласттрансформацию лимфоцитов и выработку антител, а также активизирует макрофаги, усиливает цитотоксичесое действие сенсибилизированных лимфоцитов. Одновременно его можно рассматривать и в качестве медиатора иммунного ответа.

В нейтрофильных лейкоцитах обнаружены соединения, являющиеся производными арахидоновой кислоты, получившие название лейкотриены. Лейкотриены оказывают выраженное влияние на течение иммунных процессов, являются важнейшими медиаторами воспаления, стимулируют продукцию анионов супероксида, освобождение лизосомальных ферментов, повышают сосудистую проницаемость.

В последние годы обсуждается участие нейтрофилов в регенераторных проессах и, соответственно, наличие у них репаративной функции. Не менее важным является участие нейтрофильных лейкоцитов в гемостатических реакциях организма. Известно, что нейтрофилы обладают способностью активировать контактную фазу процесса свертывания крови, так как содержат кининазы и ферменты, стимулирующие кининогенез. Нейтрофильные лейкоциты легко вступают во взаимодействие с кининогеном и XII фактором, что способствует освобождению из гранул эластазы. В то же время нейтрофильная эластазоподобная протеаза значительно тормозит процесс свертывания крови, а катепсин С при длительной инкубации инактивирует XII фактор.

Нейтрофилы являются одним из источников синтеза транскобаламина – белка, связывающего витамин В12.

Нейтрофилопоэз. В условиях нормы содержание нейтрофильных лейкоцитов в периферической крови составляет от 2300 до 4500 в 1 мкл3. В первые сутки после рождения ребенка отмечается лейкоцитоз (15 000–30 000 в 1 мкл3), содержание нейтрофилов составляет около 65 %. К концу первого года жизни количество нейтрофилов в крови достигает миниума, после чего вновь возрастает и достигает значений взрослого человека к периоду полового созревания (13–15 годам).

Период созревания нейтрофилов в костном мозге составляет 8–14 суток, в то время как первоначальная фаза созревания нейтрофилов от миелобласта до метамиелоцита продолжается 6 суток. Дальнейшие этапы постмитотического созревания могут продолжаться до 14 суток, когда нейтрофилы приобретают способность к адгезии, фагоцитозу, а на их мембране появляются рецепторы к хемотоксинам. Ежедневно из костного мозга в кровоток поступает 1010 нейтрофилов. В крови содержится около 6×1010 нейтрофилов, в равной мере рапределенных между циркулирующим и маргинальным пулом. Содержание нейтрофилов в 1 мкл в норме составляет 3500 клеток, уменьшение их количества ниже 500 в 1 мкл приводит к развитию иммунодефициту и инфекции. Полупериод циркуляции нейтрофилов в крови 6 часов, после чего они мигрируют в ткани и в кровь не возвращатся.

Касаясь участия нейтрофилов в метаболизме тканей и межклеточном взаимодействии, необходимо отметить, что нейтрофилы располагают большим количеством кислых гидролаз, способных разрушить коллаген, эластин, фибриноген, фибрин, способны продуцировать IL-1, IL-3, IL-8, TNFα, колониестимулирующие факторы.

Нейтрофилы способны взаимодействовать с клетками разного типа: эозинофилами, фибробластами, базофилами, тучными клетками, секретируют сигнальные молекулы.

В функциональном отношении нейтрофилы представляют собой гетерогенную популяцию: различают нативные (покоящиеся) нейтрофилы, праймированные, подготовленные к последующей активации и активированные. Праймированные лейкоциты интенсивно продуцируют свободные радикалы и цитокины (TNFα, IL-8), обладают выраженным повреждающим действием на различные органы и ткани за счет активации фосфолипазы А2.

Морфологические и фукциональные особенности эозинофилов

У здоровых лиц количество циркулирующих в периферической крови эозинофилов составляет 0–5 % и не превышает 1 % от общего количества эозинофилов, содержащегося в костном мозге и периферических тканях. Кровь для них, как и для других видов лейкоцитов, является лишь транспортной системой. Основные функциональные свойства эозинофилов реализуются вне кровотока в периферических тканях.

Для эозинофильных лейкоцитов характерно наличие суточных колебаний, что связано с уровнем секреции глюкокортикоидов корой надпочечников. Установлено, что максимальное их количество в крови отмечается в утренние часы, а минимальное количество – в вечернее время.

Стимуляторами продукции эозинофилов в костном мозге являются IL-3 и IL-5, эозинофилы проходят те же стадии развития, что и нейтрофилы.

Эозинофилы созревают в костном мозге в течение 24 часов, а затем в течение 3–4 суток зрелые эозинофилы остаются в костном мозге. По мере созревания клеток уменьшается ядро, исчезают ядрышки, увеличиваются количество и размеры эозинофильных гранул, повышается активность многих гидролитических ферментов.

Выходящие в кровоток эозинофилы циркулируют там не более 5 часов и постепенно переходят в ткани. Максимальное их количество обнаруживается в подслизистом слое желудочно-кишечного тракта. Повторно в кровоток они не возвращаются, разрушаются в тканях и выделяются через желудочно-кишечный тракт.

Эозинофилы имеют округлую форму, диаметр в пределах 12 мкм, ядро двулопастное, цитоплазма почти полностью заполнена специфическими гранулами, которые окрашиваются в ярко-красный или оранжевый цвет при окраске по Романовскому. Гранулы содержат в большом количестве пероксидазы, β-глюкоронидазу, а также полисахариды, аминокислоты, кислую фосфатазу и могут рассматриваться как лизосомы.

Эозинофильные гранулы содержат особую группу бактерицидных веществ, в частности эозинофильный катионный протеин, белковые кристаллы Шарко-Лейдена. Последние имеют вытянутую шестиугольную форму и обладают активностью лизофосфолипазы, подавляющей повреждающее действие некоторых лизофосфолипидов на ткани.

Основную часть энергии для жизнедеятельности эозинофилы получают в результате аэробного и анаэробного гликолиза. В качестве энергетического субстрата используется глюкоза, ее метаболизм осуществляется гликолитическим путем и выделяемая энергия утилизуется в виде АТФ, креатифосфата и гликогена.

Установлено повышение количества эозинофилов в крови (за пределы суточных колебаний – эозинофилия) при различных аллергических реакциях, глистных инвазиях и аутоиммунных заболеваниях, что указывает на роль эозинофильных лейкоцитов в развитии воспалительных, иммуноаллергических реакций организма, гиперчувствительности немедленного и замедленного типов, причем установлена максимальная концентрация эозинофилов в тех тканях, которые являются местом развития вышеуказанных реакций.

Функции эозинофилов обеспечиваются, прежде всего, их способностью к амебовидному перемещению под действием различных хемотаксических факторов, образующихся при сенсибилизации и аллергизации организма. Ряд факторов освобождается из гранул базофилов и тучных клеток. Они называются эозинофильными хемотаксическими факторами анафилаксии. Вторая группа соединений, вызывающих хемотаксис эозинофилов, выделется Т-лимфоцитами при их взаимодействии с макрофагами. Установлена способность сегментоядерных нейтрофилов выделять стимулятр хемотаксиса эозинофилов. Определенной хемотаксической активностью обладает также гистамин.

Таким образом, хемотаксис эозинофилов приводит к их скоплению в очагах воспаления, в местах развития иммунологических реакций, где они принимают участие в метаболизме гистамина. Эозинофилы обладают способностью фагоцитировать гранулы с гистамином, выделяемые тучными клетками и базофилами. Кроме того эозинофилы содержат фермент гистаминазу с высокой активностью, вызывающую инактивацию поглощенного гистамина. Есть данные, что эозинофилы обеспечивают также простой транспорт гистамина к органам выделения. В эозинофилах обнаружен фактор, тормозящий выделение гистамина из базофилов и тучных клеток.

В участках воспаления эозинофилы обеспечивают инактивацию брадикинина и ряда других биологически активных вещест. Таким образом, за счет функциональных особенностей эозинофилы предотвращают развитие воспалительных и аллергических реакций.

Следующая функция эозинофилов – их способность к фагоцитозу в отношении микробных клеток, комплексов антиген-антитело, благодаря чему они рассматриваются в роли микрофагов наряду с нейтрофильными лейкоцитами. Бактерицидное действие эозинофилов не является идентичным таковому у нейтрофилов, хотя оно также связано с активацией пероксидазы, усилением окисления глюкозы, утилизации кислорода и т.д.

Эозинофилы принимают участие в процессах свертывания крови и фибринолиза в связи со способностью синтезировать плазминоген.

Миграция эозинофилов в кровь при воспалении регулируется в основном IL-5, адгезию вызывают IL-1, TNF, IL-4, индуцирующие экспрессию эндотелиальных адгезивных молекул.

Морфологические и функциональные особенности базофилов

Базофилы представляют собой наименьшую популяцию гранулоцитов периферической крови и костного мозга; их содержание в крови взрослых лиц составляет 0–1 %. Созревание базофилов в костном мозге занимает около 1,5 суток. В течение нескольких суток зрелые базофилы депонируются в синусах костного мозга и в периферическую кровь выходят через 2,5–7 дней. В периферической крови базофилы циркулируют в среднем около 6 часов.

Зрелый базофил – клетка с диаметром 8–10 мкм, ядро неправильной формы или трехлопастное, цитоплазма имеет голубоватую окраску, но она заполнена гранулами пурпурного цвета, занимающими всю цитоплазму. Гранулы очень богаты гистамином, содержат половину гистамина, находящегося в периферической крови. В гранулах также содержатся в большом количестве мукополисахариды, среди которых различают гепарин, гиалуроновую кислоту и небольшое количество гликогена.

Продукция энергии в базофилах осуществляется главным образом за счет окислительного фосфолирирования, процессы которого обеспечиваются высоким содержанием в базофилах митохондрий и окислительных ферментов.

Функции базофилов связывают с их участием в аллергических и воспалительных реакциях за счет содержания в них биологически активных веществ, в частности, гистамина и гепарина.

Дегрануляция и освобождение гистамина из базофилов осуществляется под воздействием гуморальных факторов, в частности иммуноглобулинов Е, реже G. На мембране базофила имеется от 30 000 до 100 000 рецепторов для IgE, причем от 10 000 до 40 000 этих рецепторов могут фиксировать на себе IgЕ с помощью Fc-фрагмента. Процесс дегрануляции может осуществляться и под действием неиммуных факторов, в частности ц-3,5-АМФ. Уменьшение содержания его в клетках сопровождается освобождением внутриклеточного гистамина.

В сенсибилизированном организме дегрануляция базофилов происходит в кровеносном русле, в костном мозге, тканях, что определяет клинику крапивницы, сенной лихорадки и других аллергических заболеваний.

Рассматривая роль базофилов в развитии гиперчувствительности немедленного и замедленного типов, необходимо отметить их способность к направленному движению, что обеспечивает их поступление в зоны иммунологических реакций.

Важнейшими хемотаксическими факторами базофилов являются лимфокины, выделяемые сенсибилизированными Т-лимфоцитами.

Базофильные лейкоциты обладают также способностью к фагоцитозу, хотя данная функция и не является ведущей. Описана способность базофилов захватывать частички и сенсибилизированные эритроциты с формированием фагосомы.

Базофилы могут оказывать влияние на системы свертывания крови и фибринолиза. В базофилах содержатся ряд прокоагулянтных факторов, калликреин, вазоактивные амины.

В то же время гепарин является антикоагулянтом, обеспечивающим наряду с антитромбином III около 85 % всей антикоагулянтной активности крови.

Следующая не менее важная функция базофилов – это их участие в регуляции жирового обмена, так как выделяющийся при дегрануляции базофилов гепарин способен активировать липопротеиновую липазу, регулирующую расщепление В-липопротеидов.

Анализируя в целом биологическую значимость гранулоцитов периферической крови, следует прежде всего отдать должное фагоцитарной активности нейтрофилов, обеспечивающих не только развитие неспецифической резистентности против пиогенной микрофлоры, но и формирование синдрома системного воспалительного ответа с участием эндокринной, иммунной систем, а также ряда внутренних органов и тканей. В то же время базофильные лейкоциты, носители значительного количества вазодилататорных субстанций, играют важную роль в развитии локальных и системных гиперергических воспалительных реакций. Между тем эозинофилы, выполняя определенную фагоцитарную функцию, обеспечивают в значительной мере инактивацию многих медиаторов альтерации.


Библиографическая ссылка

Чеснокова Н.П., Понукалина Е.В., Невважай Т.А., Полутова Н.В., Бизенкова М.Н. ЛЕКЦИЯ 2. МОРФОФУНКЦИОНАЛЬНЫЕ И МЕТАБОЛИЧЕСКИЕ ОСОБЕННОСТИ ГРАНУЛОЦИТОВ ПЕРИФЕРИЧЕСКОЙ КРОВИ // Международный журнал прикладных и фундаментальных исследований. – 2015. – № 4-2. – С. 285-289;
URL: https://applied-research.ru/ru/article/view?id=6636 (дата обращения: 29.03.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674