Научный журнал
Международный журнал прикладных и фундаментальных исследований
ISSN 1996-3955
ИФ РИНЦ = 0,593

ОБЗОР КРИТИКИ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Борисов Ю.А. 1
1 ФГБОУ ВПО «Поволжский государственный технологический университет» Волжский филиал
Проанализирована критика СТО в космических исследованиях, при работе радиолокационных измерителей скорости (радаров), использовании продольного и поперечного эффекта Доплера. Показано, что «Парадокс близнецов» в СТО является кажущимся. Преподавание теории относительности в школах и вузах страны является ущербным, лишено смысла и практической целесообразности. Причиной красного смещения и фонового космического излучения может быть взаимодействие фотонов с гравитонами – квантами гравитационного излучения звезд. Рекомендованы направления дальнейших исследований и развития теории гравитации. Владение научным методом познания является важным принципом каждого ученого-исследователя.
Критика СТО и ОТО
теория гравитации
1. Эйнштейн А. О методе теоретической физики // Собр. научн. тр. Т. 4. – М.: Наука, 1967. – с. 184.
2. Ацюковский В.А. Критический анализ основ теории относительности: Аналитический обзор. – М.: Изд-во «Петит», 1996. 56 с. ил.
3. Ленин В.И. Материализм и эмпириокритицизм // Полн. собр. соч., 5-е изд. – 1961. – Т. 18. – 423 с.
4. Борисов Ю.А., Леонович А.А., Сабитов Р.А. // Основы научных исследований (Курс лекций) // ФГБОУ ВПО «Поволжский государственный технологический университет» Волжский филиал. – г. Волжск, 2012. – 77 с., URL: borisov.3dn.ru.
5. Семиков С.А. Вариации скорости света как возможный источник ошибок космической навигации, радиолокации и лазерной локации. // Электронный журнал «Журнал радиоэлектроники». –2013. – № 12.
6. Демин В.Н., Селезнев В.П. «Мироздание постигая…». – М.: Наука, 1989. – С. 140.
7. Радиолокационный измеритель скорости. URL: nestor.minsk.by›sn/2007/26/sn72617.html.
8. Эффект Доплера. URL: Эффект Доплера webpoliteh.ru›subj/optika/325…effekt-doplera.html.
9. Яворский Б.М., Детлаф А.А. Справочник по физике: 2-е изд., перераб. – М: «Наука», 1985. – С. 308.
10. Эйнштейн А. Собр. науч. тр. в 4 тт. // Т. 1. Работы по теории относительности. 1905–1920 // § 7. Теория аберрации и эффект Доплера. – М.: Наука, 1965. – С. 25–27.
11. Секерин В.И. Теория относительности – мистификация ХХ века. – Новосибирск: Издательство «Арт-Авеню», 2007. – 128 с.
12. Касьянов В. А. Физика –10 кл. // Учебник для общеобразоват. учебн. заведений – 3-е изд., стереотип. – М.: Дрофа, 2012. – 410 с.
13. Воронцов-Вельяминов Б.А. – Лаплас. 2-е изд. – М.: Наука, Главная редакция ф-м. литературы, 1985. – С. 79.
14. Борисов Ю.А. Расчет скорости гравитации. // Международный журнал прикладных и фундаментальных исследований. – 2015. – № 3-2. – С. 178–180. URL: Международный журнал прикладных и фундаментальных исследований.
15. Борисов Ю.А. О Дифракции гравитационных волн // Успехи современного естествознания. – 2014. – № 11-3. – С. 50–54. URL: Успехи современного естествознания.
16. Борисов Ю.А. Гравитация как источник внутреннего тепла планет. // Международный журнал прикладных и фундаментальных исследований. – 2015. – № 3–3. – С. 319–322. URL: Международный журнал прикладных и фундаментальных исследований.
17. Кауц В. Л. Темная материя и аномальные события в Солнечной системе. // Вестник МГТУ им. Н.Э. Баумана: Естественные науки. – 2011. – С. 141–148.
18. Большой взрыв – Викизнание. URL: wikiznanie.ru›wikipedia/index.php/Большой взрыв.
19. Эйнштейн А., Инфельд Л. Эволюция физики. – М.: «Наука», 1965. – С. 63. URL: alexandr4784.narod. ru›ei_21.htm.

Настоящий аналитический обзор включает материал, связанный с аналитическими и экспериментальными основами теории относительности, опубликованными ранее и в последнее время. Обзор не претендует на полноту изложения, в нем нашли отражение лишь те материалы, которые содержат критику специальной и общей теории относительности.

В своей лекции «О методе теоретической физики» [1, с. 184], прочитанной в 1933 году, А. Эйнштейн так излагает свое представление о том, как надо строить теоретическую физику: «...аксиоматическая основа теоретической физики не может быть извлечена из опыта, а должна быть свободно изобретена... Опыт может подсказать нам соответствующие математические понятия, но они ни в коем случае не могут быть выведены из него. Но настоящее творческое начало присуще именно математике. Поэтому я считаю, в известной мере, оправданной веру древних в то, что чистое мышление в состоянии постигнуть реальность». Цитируется по обзору [2].

Сравнивая подобные высказывания с известным положением диалектического материализма о том, что «точка зрения жизни, практика должна быть первой и основной точкой зрения теории познания» [3, с. 145], о том, что «признание объективной закономерности природы и приблизительно верного отражения этой закономерности в голове человека есть материализм» [3, с. 159], можно констатировать существенную разницу в оценке роли практики в познании законов природы. В настоящее время общепринятым является разработанный в начале развития науки (XVII век) мощный научный метод познания, сущность которого можно выразить формулой: наблюдение – теория – эксперимент – и снова все сначала, – такова бесконечная, уходящая ввысь спираль, по которой движутся люди в поисках истины [4]. Владение научным методом познания является важным принципом каждого ученого-исследователя.

1. Космическая навигация и ГИБДД против СТО. В работе [5] выполнен анализ систематических ошибок космической навигации, радиолокации и лазерной локации космических тел и аппаратов. В частности, рассмотрены ошибки радиолокации Венеры, эффект «Пионеров», Flyby-аномалия, неравномерности вращения Луны и Земли, выявленные лазерной локацией. Рассмотрена классическая баллистическая теория, согласно которой эти ошибки вызваны неучтённой вариацией скорости радиосигналов и света под влиянием скорости источника. Показано, что эта классическая теория во всех рассмотренных случаях верно предсказывает порядок величины и знак ошибок, а учёт вариаций скорости света и учёт переизлучения радиосигналов позволяет существенно снизить величину систематических ошибок.

Радарные ошибки от неучтённых вариаций скорости света могут снижать точность космических программ и вести к авариям космических кораблей, а также простых судов и автомашин с GPS. Однако «постоянство скорости света» в космосе до сих пор однозначно не проверено с использованием спутников, ракет и радаров.

На ложный «сдвиг» Венеры по орбите впервые обратил внимание космический навигатор, обучавший первые отряды космонавтов, – проф. В.П. Селезнев, сотрудник С.П. Королёва и автор монографии «Навигационные устройства» (М.: Оборонгиз, 1961), создавший навигационные системы первых космических кораблей. Селезнев показал, что без учёта классической баллистической теории «на основе научных сведений о свете астронавигация в принципе невозможна». Он же отметил значение баллистической теории в навигации АМС и космических зондов, ряд аварий которых, скажем у аппаратов «Фобос-I» и «Фобос-II», вызван радарными ошибками. Не исключено, что и аварии ряда других аппаратов, посланных в разные годы к Венере и Марсу, вызваны систематическими ошибками измерения положений аппаратов и планет на основе данных радиолокации.

В книге В.Н. Демина и В.П. Селезнева [6] указывается, что возможной причиной гибели наших направленных к Марсу космических аппаратов «Фобос-1» и «Фобос-2» (их стоимость без стоимости запусков более 800 млн руб., или 1 млрд. долл.) является расчет локации и траектории полета по формулам СТО. Тогда как американские космические аппараты, траектория которых рассчитана по классической механике, облетев все планеты, покинули Солнечную систему. Пора бы и в России понять пагубность релятивизма

Об ошибках в системе GPS и противоречиях её данных теории относительности неоднократно заявлял и Р. Хатч – пионер разработок системы GPS, глава компании NavCom и Института систем космической навигации (ION).

Отметим, что и при «стрельбе» со спутников лазерным лучом по наземным контрольным мишеням приходится учитывать классической баллистический принцип – без этого луч всегда уходит на несколько метров вперёд за счёт эффекта аберрации (то есть добавления вектора орбитальной скорости спутника к вектору скорости испущенного им светового луча).

Для определения скорости движения автомобиля [7] радиолокационные измерители скорости, или радары, используют эффект Доплера. Радиолокационный измеритель скорости (радар), используемый ГИБДД, излучает электромагнитный (э/м) сигнал, который отражается от поверхности металлических объектов. Отраженная волна снова принимается радаром. Частота сигнала, отраженного от движущегося объекта, отличается от частоты излучаемого сигнала на величину, пропорциональную скорости перемещения объекта. По разнице частот радар определяет величину скорости объекта.

boris1.tif

Рис. 1. Работа радиолокационного измерителя скорости. Длина э/м волны в системах К и К′ остается одинаковой

На рис. 1 в точке А находится тело отсчета – источник э/м волны – радар (1), он же – приемник. Волна от радара распространяется со скоростью (c) в положительном направлении оси X неподвижной системы отсчета K; λ – длина этой волны. На рис. 1 у э/м волны показана только электрическая составляющая. Пусть навстречу э/м волне в направлении к радару (точка А) со скоростью (υ) движется автомобиль (2) как тело отсчета подвижной K′ системы отчёта. В этой подвижной системе отсчета автомобиль покоится. В каждой из систем отсчета традиционно находятся по наблюдателю.

Рассмотрим с точки зрения классических представлений определение скорости автомобиля в неподвижной системе отсчета K. Радар излучает э/м волну в направлении автомобиля со скоростью света (с), которую можно выразить:

с = λ*ν (1)

Если система K′ вместе с автомобилем покоится, то скорость волны в этой системе отсчета для наблюдателя, находящегося в автомобиле, будет определяться также формулой (1). При этом следует обратить внимание, что на длине автомобиля (расстояние BD) укладывается (условно) три длины волны (λ) в любой момент времени. Движение волны можно мысленно представить движущейся вдоль оси AX смоделированной из проволоки змейки. Пусть теперь система K′ движется вместе с автомобилем со скоростью (υ) (см. рис. 1). Это движение также можно смоделировать. Тогда нетрудно видеть, что частота э/м волны увеличится: ν′ = ν + Δν, т.к. «число ударов» гребней волны в точку (B) увеличится. Длина волны (λ′ = λ) не изменится, т.к. на длине автомобиля (BD) также будет укладываться 3 длины волны; скорость (с′) будет складываться из (с) и (υ). Тогда в системе K′, связанной с автомобилем, уравнение для скорости (с′) падающей на автомобиль и проходящей относительно него волны (плоскость Y′Z′) аналогичное (1) будет:

с′ = λ*ν′ , (2)

или

с + υ = λ (ν + Δν). (3)

Поделив уравнение (3) на (1), и далее после несложных преобразований получим:

bor01.wmf. (4)

Излучаемая лазером э/м волна, падая на металлическую поверхность автомобиля в плоскости Y′Z′, вызывает движение электронов в металлической поверхности автомобиля. Это движение индуцирует отраженную в направлении к приемнику радара (точке А) э/м волну со скоростью, равной скорости света плюс скорость движения автомобиля (с + υ) в системе отчёта K′ и увеличенной на Δν частотой. Таким образом, к приемнику радара в неподвижной системе отсчета K движется э/м волна, выражаемая уравнением аналогичном уравнению (3):

с + 2υ = λ (ν + 2Δν), (5)

из которого можно получить уравнение (6), аналогичное уравнению (4):

bor02.wmf, (6)

или окончательно:

bor03.wmf. (7)

Получить уравнение (7) можно также рассматривая отражение э/м волны от автомобиля как от зеркала. При этом радар с изученной им волной можно представить как мнимое изображение за зеркалом на одной линии с автомобилем. Расстояние от радара до его изображения в два раза больше, чем до автомобиля, а время движения – одинаковое. Поэтому приближение изображения радара к приемнику будет происходить со скоростью в 2 раза большей, чем скорость автомобиля в том же направлении. Изменение частоты э/м волны будет происходить пропорционально ее скорости. Что соответствует уравнениям (6) и (7).

Из приведенного выше материала (см. уравнения 3 и 5) видно, что длина волны отраженного сигнала не меняется. А увеличивается частота и скорость этого сигнала, т.е. скорость э/м сигнала увеличивается прямо пропорционально его частоте. Таким образом, скорость света в различных системах отсчета меняется. И как это релятивисты запутались в трех буквах уравнений (1 и 2)?

Релятивистский анализ рассматривает два случая эффекта Доплера: продольный и поперечный [8, 9]. Если приемник движется относительно источника вдоль соединяющей их прямой, то наблюдается продольный эффект Доплера (см. рис. 2).

boris2.tif

Рис. 2. Продольное движение приемника (Пр.) в системе K′ к волне, излучаемой источником (И) в системе К

В случае сближении источника и приемника:

bor04.wmf, (8)

здесь ν > ν0.

Из этого уравнения, задаваясь условием υ « с можно получить уравнение (7) для определения скорости тела (υ). А в случаи их взаимного удаления (см. рис. 2):

bor05.wmf, (9)

здесь ν < ν0.

В уравнениях (8 и 9) видно, что скорости света и объекта складываются и вычитаются.

Релятивистская теория рассматривает поперечный эффект Доплера, наблюдающийся в тех случаях, когда источник движется перпендикулярно линии наблюдением (см. рис. 3). Поперечный эффект Доплера выражается формулой:

boris3.tif

Рис. 3. Поперечное движение приемника (Пр.) в системе K′ к волне, излучаемой источником (И) в системе К

bor06.wmf. (10)

В статье «к электродинамике движущихся тел» 1905 год [10] А. Эйнштейн рассматривал единственный частный случай, когда приемник двигался поперечно со скоростью (υ) относительно почему-то «бесконечно удаленного источника света». При поперечном эффекте Доплера ν < ν0 т.е. всегда наблюдается уменьшение частоты сигнала.

Из уравнений (9) и (10), учитывая, что период колебаний, или интервал времени, обратно пропорционален частоте колебаний, получим (обозначения на рис. 2 и 3):

bor07.wmf, (11)

bor08.wmf. (12)

Парадокс заключается в том, что уравнения (11) и (12) имеют разный вид. Это значит, что масштабы времени в подвижных системах отсчета K′ на рис. 2 и 3 разные. Система отсчета K′ на рис. 3 так удобно движется, что стоит экспериментатору в неподвижной системе отсчета K по рис. 3 перевести источник э/м излучения в положение, изображенное на рис. 2, так сразу же масштаб времени изменится от формулы (12) к формуле (11). Так как масштаб времени, согласно релятивистской теории, в подвижных системах отсчета определяет масштаб предметов, их массу и энергию, то указанные величины также изменятся. Это противоречит здравому смыслу. Лучше совсем отключить источник э/м излучения, – тогда все встанет на свои места, и не будет проблем с теорией относительности. В своей работе «К электродинамике движущихся тел» и в 1905 г. и в 1915 г. [10, с. 418] А. Эйнштейн рассматривает продольное перемещение подвижной системы отсчета, а уравнения преобразования координат получены им как для поперечного перемещения подвижной системы, в том числе и приведенное у нас уравнение увеличения интервала времени (12), или см. ниже уравнение (14), которые вошли во все школьные и вузовские учебники. Уравнения преобразования координат в подвижной ИСО относительно неподвижной ИСО зависят от направления движения этой ИСО, места расположения точек в пространстве, вследствие этого в подвижной ИСО масштаб времени и пространства меняются от точки к точке, а также во времени, (т.к. система движется, а угол между приемником и источником непрерывно уменьшается, в пределе переходя к условию, изображенному на рис. 2). И это определяется лишь углом, под которым расположен источник э/м излучения в неподвижной ИСО, или видна, например, с помощью телескопа точка (или предмет) в пространстве подвижной ИСО из неподвижной и скоростью движения этой точки. Действительно, можно одним направлением взгляда сжать пролетающий космический корабль? Ведь по утверждению А. Эйнштейна в СТО все процессы – не кажущиеся, а реальные. И, благодаря такому представлению, возникло релятивистское понятие и термин «пространство-время».

В настоящее время релятивисты отказались от возможного увеличения массы с увеличением скорости тела, и связали это явление с увеличением энергии тела. Напомним, что энергия и масса тела являются скалярными (ненаправленными) величинами, время также не имеет пространственного направления, тогда как релятивистская теория рассматривает влияние векторной величины (скорости) на характеристики тел в движущихся ИСО. В направлении, перпендикулярном к направлению скорости движущейся системе отсчета, составляющие этой скорости равны нулю, т.е. скорость отсутствует, поэтому изменение указанных векторных составляющих тел (например, ширина, высота и др.) не происходит. Значит, изменение скалярных (ненаправленных) величин тоже не должно происходить. Ведь терминов продольная и поперечная масса, энергия и любая другая скалярная величина (в том числе на наш взгляд и время) не может быть по их определению. Тем не менее, А. Эйнштейн рассматривал [10, с. 34] продольную и поперечную массы электрона, приводя соответствующие формулы.

2. Образование против СТО. Приведем отзывы В.И. Секерина в его книге [11] по практике преподавания в школах и вузах теории относительности. «Теория относительности формировалась постепенно, большую подготовительную работу проделали ученые Э. Мах, А. Пуанкаре, Г. Лоренц и другие, но у них был свой взгляд на теорию относительности, отличающийся от позиции Эйнштейна. За время существования теории относительности, в понимании природы электромагнитного излучения наука не продвинулась вперед. Сформированная релятивизмом методика познания, в котором математические обозначения и графические символы принимаются за реальные объекты и изучаются, ведет в тупик. В настоящее время теория относительности является тормозом в мировой науке. Теория относительности, как и всякое проявление философского идеализма, особо пагубное влияние оказывает на неокрепшее сознание юношества, так как ее идеи нельзя понять, нельзя соотнести, согласовать, уложить в систему с ранее полученными знаниями, их можно только принять на веру и запомнить. Поэтому преподавание теории в школах и вузах ведет к воспитанию комплекса неполноценности, когда, приложив максимум усилий, человек ничего не понимает и считает причиной этого свои способности, либо двурушничество, когда при непонимании, утверждается вслух, что все понятно. И во всех случаях воспитываются идеологическая всеядность, эклектизм и отсутствие убеждений».

Приведем материал из учебника для средних школ [12] по замедлению времени в инерциальных системах отсчета (ИСО) при их движении с постоянной скоростью (υ) относительно неподвижной ИСО. Этот материал позволит, по выражению автора, «изучить глубже» понятие времени. Обозначения величин на рис. 4 и в уравнениях приведены по учебнику [12, с. 199].

boris4.tif

Рис. 4. Измерение времени неподвижным наблюдателем. По мнению наблюдателя, световой импульс проходит большее расстояние за больший промежуток времени: t > t’

«Световые часы (одна из разновидностей часов) – два зеркала, установленных на расстоянии (l) параллельно друг другу (рис. 2). Световой импульс, отражаясь от поверхностей зеркал, может перемещаться между ними вверх и вниз за промежуток времени (t’= l/с). Пилот на борту космического корабля, движущегося со скоростью (υ), может измерять время по этим часам, покоящимся относительно корабля (t’). Время (t’) называется собственным временем. Собственное время – время, измеренное наблюдателем, движущимся вместе с часами. Внешнему наблюдателю путь светового импульса (при движении световых часов вместе с ракетой) по диагонали будет казаться более длинным, чем пилоту корабля (рис. 2). При этом в соответствии со вторым постулатом СТО движение светового импульса должно происходить со скоростью света (с), одинаковой во всех ИСО. Введем промежуток времени (t), за который импульс достигнет верхнего зеркала (с точки зрения внешнего наблюдателя). За это время космический корабль пролетит расстояние (υt), а световой импульс пройдет расстояние (ct). Применяя теорему Пифагора к ΔАВ’А’, имеем:

(ct)2 = (υt)2 + (ct’)2. (13)

После перегруппировки слагаемых в (1) найдем промежуток времени (t) в движущейся системе отсчета для неподвижного наблюдателя:

bor09.wmf. (14)

Это означает, что неподвижный наблюдатель обнаруживает замедление хода движущихся со скоростью (υ) часов по сравнению с точно такими же, но находящимися в покое часами, в γ = t/t’ раз.

Эффект замедления времени не имеет ничего общего с особыми свойствами света или конструкцией световых часов, а является неотъемлемым свойством самого времени. Поскольку замедление времени – свойство самого времени, то замедляют свой ход не только движущиеся часы. При движении замедляются все физические процессы, в том числе и химические реакции в человеческом организме, поэтому течение жизни замедляется в соответствующее число раз. Соответственно замедляется и процесс старения космических путешественников: Замедлением времени объясняется «парадокс близнецов». Вернувшийся из космического путешествия близнец стареет гораздо меньше, чем его брат, оставшийся на Земле».

Чтобы увидеть из приведенного материала элементы несостоятельности СТО обратим внимание на нестыкующиеся моменты:

- Для более глубокого изучения понятия времени надо сначала хотя бы дать общее определение времени, причем, не такое как в СТО: t = x/c, а связанное с биологической и практической жизнью человека.

- В уравнении (14) заменим отношение (υ2/c2) на (соs φ) как это видно из треугольника на рис. 4. Далее, используя простые тригонометрические преобразования, получим:

bor10.wmf. (15)

Уравнения (14) и (15) абсолютно идентичны. Из уравнения (15) видно, что управление интервалом времени в пространственно-временном континууме движущейся системы отсчёта выполняет простая тригонометрическая функция (sin φ). И настолько «эффективно», что в этой системе, согласно СТО, реально увеличивается масса тел, их энергия и сокращается длина предметов. Поражает масштабность предназначения функции! А кто в это поверит?

- Согласно СТО замедлением времени объясняется и «парадокс близнецов» На примере с близнецами противоречия в СТО легко раскрываются на основе классического принципа относительности. Близнец-путешественник вместе со штрихованной системой движется относительно покоящейся нештрихованной системы, связанной с Землей, где в качестве наблюдателя находится близнец-домосед. Для него интервал времени в движущейся системе будет выражаться уравнением (15). Но, благодаря принципу относительности, близнец, оставшиеся на Земле, движется относительно покоящегося для него близнеца-путешественника в его системе K’. Тогда для него интервал времени в системе K выразится уравнением, аналогичным уравнению (15), путем замены величины интервала времени в нештрихованной ИСО на интервал времени в штрихованной ИСО:

bor11.wmf. (16)

Подставляем t’ из уравнения (16) в уравнение (15) в результате несложных преобразований получим:

sin φ = 1. (17)

Заменяя из треугольника АА’Б’ на (рис. 4) через отношение sin φ = ct’/ct окончательно получим:

t’ = t. (18)

Таким образом, близнецы, встретившись на Земле, постареют одинаково, а это означает, что время течет одинаково в неподвижной и подвижной системах отсчета, и, как следствие этого, остаются одинаковыми масштаб предметов, их масса и энергия, а также однородность и изотропность пространства и изохронность времени. В работе [10, с. 615–625] А. Эйнштейн рассматривает «диалог релятивиста с критиком» по «парадоксу близнецов». Там он в оправдание «парадокса» заменяет инерциальную систему отсчета путешественника на неинерциальную, подчеркивая, что, двигаясь с ускорением, путешественник проживает меньшее время. Понятно, что такая замена неправомерна. – Выражаясь пословицей: «Мы тебе – про Фому, а ты нам – про Ерему». По анализу приведенного из учебника материала учащиеся сами смогут сделать вывод, помог он им «глубже изучить» понятие времени, или только запутал? По отзывам студентов и преподавателей ведущих университетов Поволжья: «теория относительности изучается в соответствии с официальными программами, но с последующим анализом и современной объективной интерпретацией».

Приведённый выше анализ учебного материала из учебника для средних школ [12] подтверждает выводы В.И. Секерина в работе [11]:

«Теория относительности несостоятельна как физическая теория. Следовательно, ее дальнейшее преподавание в школах и ВУЗах является умышленным обманом и ведет к нанесению морального ущерба учащимся и студентам, а продолжение финансирования ложных научно исследовательских работ – к материальным потерям государства».

Заслуживает внимания работа В.А. Ацюковского [2]. В этой работе автор, критикуя теорию относительности, отмечает, что в ней необоснованно для синхронизации часов в различных ИСО используется свет, распространяющийся с известной во времена А. Эйнштейна максимальной скоростью. Причем утверждается, что «Не может существовать взаимодействие, которое можно использовать для передачи сигналов и которое может распространяться быстрее, чем свет в пустоте». Таким образом, понятие одновременности совместно с понятием интервала времени определяют по Эйнштейну, с одной стороны, взаимосвязь пространства и времени, с другой – зависимость размеров, массы, импульса и энергии от скорости движения тела. Здесь скорость распространения света выступает фундаментальной величиной. Любопытен в связи с этим сделанный А. Эйнштейном вывод, о предельности скорости света при суммировании скоростей. Точно так же можно было бы принять за основу некоторую гипотетическую скорость, которая больше скорости света, и тогда можно было бы прийти к выводу о невозможности превышения именно этой гипотетической скорости. Такой скоростью может быть скорость гравитации, которая согласно исследованиям Лапласа [13], на 8 порядков превышает скорость света. Это подтверждается и нашими расчетами [14]. В результате скорость света, частное свойство, фактически возведена в СТО в ранг всеобщей инварианты и, как известно, в таком же качестве она используется в теории гравитации А. Эйнштейна, или ОТО (общей теории относительности).

3. Эквивалентность гравитационной и инертной масс. Понятие эквивалентности гравитационной и инертной масс было принято в ОТО не сразу. Сначала было использовано «ошибочное» выражение принципа эквивалентности. Согласно этому принципу: «никакими опытами внутри изолированной системы нельзя определить 1) находится ли это система в поле силы тяжести с напряженностью (g) или 2) движется с ускорением (а = g) вдали от тяготеющих тел». Делается оговорка о том, что этот принцип действует в ограниченном пространстве, т.к. поле силы тяжести – центральное поле с квадратичной зависимостью напряженности от центра тяготеющего тела. В качестве критики первоначального принципа эквивалентности в ОТО можно рассмотреть замену гравитации на инерцию (ускоренное движение), если опыт из лифта перенести на поверхность Земли, то тогда по этому принципу можно считать, что не пробное тело падает на Землю с ускорением (g), а поверхность Земли приближается к нему с ускорением (g). Очень необычно! Красиво! Но тогда куда делось гравитационное поле? Его нет? Есть непрерывное «набухание» тяготеющих тел. Такое представление никто не примет! Тогда А. Эйнштейн вводит деформацию пространства вокруг тяготеющих тел или перед ускоренно двигающимися объектами (например, перед лифтом, а за лифтом будет антигравитация). Вот тогда для этого деформированного пространства-времени можно записать уравнения гравитационного поля, а, чтобы скрыть от возможной критики первоначальный принцип эквивалентности, он был заменен на принцип эквивалентности гравитационной и инертной масс. Этот принцип давно используется в классической механике. Одной записью уравнений гравитационного поля в ОТО вопросы теории гравитации не решатся. ОТО также не предсказаны новые явления, связанные с гравитацией. Для дальнейшего развития теории гравитации необходимы ее объективные экспериментальные исследования. Есть еще до конца не изученные многие свойства гравитационного поля: скорость распространения [14], дифракция [15], не обнаружены носители гравитационного поля – гравитоны [14], их излучение, распространение и функция переноса энергии [16].

4. Развитие теории гравитационного поля. В работах [14, 15, 16] изложены развиваемые нами альтернативные представления о гравитационном взаимодействии. Мы считаем, что гравитационное поле переносится волновыми частицами этого поля – гравитонами, распространяющимися прямолинейно от источника излучения. Поглощение телом гравитационной энергии и превращение ее в кинетическую энергию тела или его частей (атомов) является неотъемлемым свойством гравитационного взаимодействия. В нашей статье [14], как методический прием, был использован метод аналогий между гравитационным и электромагнитным полями. Было получено уравнение интенсивности гравитационного поля тяготеющего тела:

bor12.wmf, (19)

где g – напряженность гравитационного поля, G – гравитационная постоянная, скорость распространения гравитационных волн. В этой работе использованы представления теории близкодействия, сущность которой сводится к следующему. Сила тяготения определяется массами тяготеющих тел. Массы сосредоточены в ядрах атомов, которые излучают и поглощают гравитационные волны в виде квантов этих волн – гравитонов. В работе [14] выполнена оценка скорости распространения гравитационных волн: σ ≈ 1,2·1015 м/с. В работе [15] выполнена оценка длины гравитационных волн: λ ≈ 10·17 м и, соответственно, их частоты: ν ≈ 1,2·1032 Гц. Там же [15] была показана возможность дифракции гравитационных волн, что доказывает волновую природу гравитационного взаимодействия. Показано, что расположение планет и других объектов Солнечной системы определяется положением максимумов дифракции гравитационного поля Солнца (аналогично – положение спутников и колец планетных систем определяется положением максимумов дифракции гравитационного поля планет). Экспериментальные замеры гравитационных полей в Солнечной системе проведены при исследовательских полетах космических аппаратов «Пионер-10 и -11» [17]. Согласно проведённым замерам были обнаружены максимумы напряженностей гравитационного поля. Причем, обнаруженные максимумы приходятся на области расположения планет и их спутников. Полученные результаты являются экспериментальным доказательством дифракции гравитационного поля и его волновой природы. Существование дифракционных максимумов позволяет объяснить устойчивость, происхождение и эволюцию Солнечной системы и её планетных систем. Коэффициент поглощения квантов гравитационных волн (гравитонов) приемными ядрами тяготеющих тел очень низок [14, 16] и, вероятно, зависит от размеров ядер относительно объема атомов, условий поглощения и агрегатных состояний вещества. Такими объектами, участвующими в излучении и поглощении квантов гравитационного поля тел Солнечной системы, являются ядра атомов. Поглощение энергии гравитационного поля, по нашему мнению, является главным фактором повышения температуры в недрах планет [16]. Здесь же получено уравнение для средней интенсивности (Jг) излучения гравитационного осциллятора на расстоянии R от него:

bor13.wmf, (20)

где m0 – масса осциллятора, d0 – амплитуда колебаний осциллятора, ω – его частота, σ – скорость гравитационных волн. Из уравнения (20) видно, что интенсивность гравитационного излучения пропорциональна четвертой степени частоты и обратно пропорциональна квадрату расстояния от источника излучения. Красное смещение и фоновое космическое излучение (реликтовое) объясняются взаимодействием фотонов с гравитонами. Последние имеют более высокую скорость, догоняют фотоны и гасят их энергию.

5. Большой взрыв – не соответствующая природе космологическая модель (ошибочно называемая теорией), описывающая воображаемое раннее развитие Вселенной и воображаемое начало ее воображаемого расширения [18]. Утверждается, что перед Большим взрывом Вселенная находилась в воображаемом сингулярном состоянии (в виде точки – первородного атома). Доказательствами того, что в истории Вселенной когда-либо мог быть Большой взрыв, физика не располагает. Есть несколько экспериментальных данных (красное смещение в спектрах удаленных галактик, так называемое реликтовое излучение и др.), которые сторонники модели ошибочно принимают за свидетельства Большого взрыва:

Красное смещение. 1929 год, Хаббл установил факт «красного смещения» и вывел зависимость «смещения» (z) от расстояния (R) до объекта:

bor14.wmf, (21)

где (Н) = 3·10-18c-1 (постоянная Хаббла).

Закон Хаббла многократно проверен различными астрономами и соответствует реальной действительности. В экспериментах спектр звезд (галактик) сравнивается с обычным спектром. По взаимному расположению характерных линий спектра определяется величина (z), а по яркости – расстояние (R). Отсюда находится величина Н, которая оказалась примерно одной и той же для многих измерений.

Красное смещение объясняется фотон-нейтринным взаимодействием, игнорируемым моделью Большого взрыва. Причиной красного смещения может быть взаимодействие фотонов с гравитонами – квантами гравитационного излучения звезд. Имея более высокую скорость [14], чем фотоны, и общее направление движения с ними, гравитоны непрерывно догоняют фотоны и вступают с ними в энергетическое взаимодействие. При этом кванты света расходуют энергию на взаимодействие с квантами гравитационного излучения звезды на всем пути их движения. Потеря энергии фотонов соответствует уменьшению частоты излучения света звезды и его сдвигу в красную сторону спектра. Следовательно, «красное смещение» свидетельствует не о «расширении Вселенной», а о потере фотонами энергии. Нет оснований полагать, что «красное смещение» спектров далеких галактик подтверждает ОТО.

Реликтовое излучение объясняется природными источниками. К настоящему времени физика установила некоторые природные источники фонового космического излучения, исторически ошибочно называемого реликтовым. К одному из таких источников относятся взаимодействия нейтрино. Далее необходимо подробно исследовать весь спектр фонового космического излучения, определить его составляющие, а также установить их возможные источники. В настоящий момент физика может утверждать, что в истории Вселенной не было и не могло быть Большого взрыва. Даже наличие самого расширения Вселенной является лишь предположением построенном на одностороннем толковании.

Фоновое космическое излучение (реликтовое излучение), по-видимому, также может быть объяснено аналогично красному смещению взаимодействием фотонов с гравитонами – квантами гравитационного излучения звезд, но находящихся на значительно большем удалении от Земли. Этим подтверждается модель бесконечной Вселенной, согласно которой вся небесная сфера должна сиять так, как если бы в каждой ее точке была излучающая звезда. Так оно и есть, только сияние каждой звезды в результате взаимодействия фотонов с гравитонами превратилось в «фоновое космическое излучение».

6. Наука и научный метод познания. Каждый ученый-исследователь должен овладеть научным методом познания [4], без которого не может быть никакой науки. Наука есть система знаний о законах функционирования и развития объектов. Наука всегда фиксируется в максимально определенном (для каждого уровня) языке. Наука представляет знание, эмпирически проверяемое и подтверждаемое.

Результат познания фиксируется в научной теории. Цель создаваемой теории заключается прежде всего в том, чтобы понять все уже известные экспериментальные факты. Затем от теории требуется «способность вытягивать шею», то есть делать определенные утверждения, предсказания по получению новых результатов, допускающие проверку путем эксперимента или наблюдений. Как только теория выдерживает эту проверку, перед ней возникает очередная задача – сделать следующее предсказание, и открываются все новые и новые способы проверки. Так развивается теория, либо обнаруживается на какой-то стадии ее несостоятельность. Теория должна быть жесткой. Химическая или физическая теория является научной постольку, поскольку она может быть опровергнута, в отличие, например, от религиозных догматов, которые не могут быть опровергнуты. Если же в теории отсутствует определенность, и она может быть приспособлена к любым новым фактам, то такая теория представляет собой всего лишь жалкую игру слов. Пробным камнем науки является вовсе не то, разумна теория или нет. Решающим обстоятельством является ответ на вопрос: работает теория или не работает. В этой связи уместно напомнить читателям пророческие слова, сказанные однажды выдающимся ученым XX века, лауреатом нобелевской премии по физике, удостоенным ее в 1921 г. за работу в области фотоэффекта, иностранным почётным членом АН СССР А. Эйнштейном [19]: «В науке нет вечных теорий. … Всякая теория имеет свой период постепенного развития и триумфа, после которого она может испытать быстрый упадок».

Методология научных исследований. Самым важным в методологии научных исследований является разработанный в начале развития науки (XVII век) мощный научный метод познания, до разработки которого никакой науки не было. Сущность научного метода познания можно выразить формулой: наблюдение – теория – эксперимент – и снова все сначала, – такова бесконечная, уходящая ввысь спираль, по которой движутся люди в поисках истины. В научном методе познания также существуют следующие принципы: принцип объективности, принцип открытости новому и принцип соответствия. Принцип объективности утверждает независимость результатов исследований от того, кто проводил эксперименты, результаты должны быть воспроизводимы и повторяемы независимыми опытами других исследователей. Принцип открытости новому устанавливает возможность для исследователя публикации результатов своей работы, даже в том случае если эти результаты противоречат общепринятым взглядам. В последующем, если эти результаты не получат подтверждения, они будут отбракованы самой наукой (другими исследованиями). В науке существует принцип соответствия, согласно которому хорошо проверенные законы и соотношения остаются неизменными и после нового значительного открытия или научной революции.

Общие принципы научной и философской методологии. Среди философских методов наиболее известными являются: диалектический и метафизический. Метафизика рассматривает вещи и явления изолированно, отдельно, независимо друг от друга. Метафизическая мысль устремлена к простому, единому и целостному. Диалектика рассматривает изучаемые объекты и явления во взаимосвязи и движении в свете диалектических законов:

а) единства и борьбы противоположностей;

б) перехода количественных изменений в качественные;

в) отрицания отрицания (развитие с обновлением).

Диалектика пользуется общелогическими методами исследований: анализ, синтез, индукция, дедукция, аналогия. Анализ – метод исследования, с помощью которого изучаемое явление или процесс мысленно расчленяются на составные элементы с целью изучения каждого в отдельности. Разновидностями анализа являются классификация и периодизация. Синтез – метод исследования, предполагающий мысленное соединение составных частей или элементов изучаемого объекта, его изучение как единого целого. Методы анализа и синтеза взаимоувязаны, их одинаково используют в научных исследованиях. Индукция – это движение мысли (познания) от фактов, отдельных случаев к общему положению. Индукция приводит к всеобщим понятиям и законам, которые могут быть положены в основу дедукции. Дедукция – это выведение единичного, частного из какого-либо общего положения; движение мысли (познания) от общих утверждений к утверждениям об отдельных предметах или явлениях. Аналогия – это способ получения знаний о предметах и явлениях на основании того, что они имеют сходство с другими; рассуждение, в котором из сходства изучаемых объектов в некоторых признаках делается заключение об их сходстве и в других признаках.

Выводы

1. Использование СТО для расчетов в космической навигации, радиолокации и лазерной локации, является вероятным источником ошибок и аварий нескольких АМС.

2. Э/м волна, излучаемая радаром со скоростью света, после отражения от движущегося объекта (автомобиля) имеет более высокую скорость, чем скорость света.

3. Согласно СТО, управление интервалом времени в пространственно-временном континууме движущейся системы отсчёта выполняет простая тригонометрическая функция синуса, и настолько «эффективно», что в этой системе, реально увеличиваются масса тел, их импульс, энергия и сокращается длина предметов. Поражает масштабность предназначения функции!

4. Преподавание теории относительности в школах и вузах страны является ущербным, лишено смысла и практической целесообразности.

5. Продолжить дальнейшие исследования гравитации, ее излучение, распространение, поглощение и дифракцию гравитационных волн, исследования по регистрации частиц гравитационного поля – гравитонов, что имеет важное значение для разработки теории гравитации. Продолжить исследования взаимодействия света с частицами гравитационного поля – гравитонами.

6. Причиной красного смещения и фонового космического излучения может быть взаимодействие фотонов с гравитонами – квантами гравитационного излучения звезд. Имея более высокую скорость, гравитоны непрерывно догоняют фотоны на всем пути их движения и вступают с ними в энергетическое взаимодействие. Потеря энергии фотонами соответствует уменьшению частоты излучения света звезды и ее сдвигу в красную сторону спектра.

7. Каждый ученый-исследователь должен владеть научным методом познания (без которого не может быть никакой науки) и использовать в своей научной работе следующие научные принципы: принцип объективности, принцип открытости новому и принцип соответствия.


Библиографическая ссылка

Борисов Ю.А. ОБЗОР КРИТИКИ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 3-3. – С. 382-392;
URL: https://applied-research.ru/ru/article/view?id=8740 (дата обращения: 29.03.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674