В производстве энергонасыщенных веществ, процессах алкилирования, концентрирования азотной кислоты с помощью серной кислоты абсолютный расход серной кислоты сравнительно невелик, но большое количество ее выводят из цикла в виде отработанной серной кислоты (ОСК). Одним из путей утилизации такой ОСК является денитрация и концентрирование с целью повторного использования в основном производстве. Использование ОСК позволяет наряду с частичным обеспечением потребности промышленности в серной кислоте и сокращением единовременных и текущих затрат на развитие сернокислотного производства решать актуальные социально-экономические задачи предотвращения вредных выбросов в окружающую среду. Кроме того, перспективами развития химической промышленности намечен ускоренный рост производства серной кислоты высокого качества, удовлетворяющий мировым требованиям. Глубокая денитрация, обеспечивающая повышение сортности кислоты и требуемой степени очистки ОСК, возможно при добавке различных денитрирующих агентов, восстанавливающих соединения азота. Оксид азота (III) может восстанавливаться с выделением таких продуктов как элементного азота, оксидов азота (I) и (II), азотистой кислоты. При использовании углеродсодержащих добавок в газовую фазу могут выделиться оксиды углерода (II) и (IV). Термодинамический анализ взаимодействия оксида азота (III) (или азотистой кислоты) и исследования состава газовой фазы [3, 5] показали, что все испытанные денитрирующие агенты можно разбить на две группы: одни преимущественно восстанавливают соединения азота до элементного азота, а другие – преимущественно до оксида азота (II).
Цель исследования
Целью работы явилось исследование термодинамического анализа взаимодействия оксида азота (III) с денитрирующими агентами, дефиксирующими связанный азот при температурах 298 и 403 К и денитрации нитрозы, содержащей оксиды азота (III) с массовой долей серной кислоты 70 %, с испытанными денитрирующими агентами.
Материалы и методы исследования
Для исследования нитрозы готовили путем растворения кристаллов нитрозилсерной кислоты в серной кислоте с массовой долей исходной серной кислоты 70 %. Методика проведения экспериментов и обработки полученных данных описаны ранее [1, 2, 4, 6].
Результаты исследования и их обсуждение
Выполнен термодинамический анализ взаимодействия оксида азота (III) (азотистой кислоты) с восстановителями (табл. 1).
Таблица 1
Значение энергии Гиббса при взаимодействии оксида азота (III) (азотистой кислоты) с восстановителями
Восстановитель |
– ΔGот , кДж/моль N2O3 , (HNO2). |
|||||
N2, CO2 |
N2O, CO2 |
NO, CO2 |
N2, CO |
N2O, CO |
NO, CO |
|
Температура 298 К |
||||||
Гидроксиламин |
2174 (1080) |
610 (298) |
134 (61) |
– |
– |
– |
Муравьиная кислота |
949 (467) |
576 (281) |
249 (112) |
– |
– |
– |
Щавелевая кислота |
1141 (565) |
703 (345) |
313 (144) |
– |
– |
– |
Глюкоза |
861 (424) |
517 (251) |
207 (97) |
809 (398) |
482 (244) |
413 (88) |
Карбамид |
813 (400) |
321 (153) |
50 (26) |
763 (375) |
727 (115) |
43 (14) |
Сульфит аммония |
745 (366) |
286 (136) |
53 (20) |
– |
– |
– |
Сульфат аммония |
694 (312) |
235 (110) |
47 (9) |
– |
– |
– |
Температура 403 К |
||||||
Гидроксиламин |
2088 (1057) |
594 (309) |
158 (92) |
– |
– |
– |
Муравьиная кислота |
1168 (597) |
760 (393) |
706 (175) |
– |
– |
– |
Щавелевая кислота |
2923 (1474) |
1961 (961) |
919 (460) |
– |
– |
– |
Глюкоза |
632 (329) |
370 (198) |
132 (79) |
424 (225) |
231 (128) |
62 (44) |
Карбамид |
773 (391) |
301 (164) |
85 (55) |
713 (396) |
232 (128) |
50 (38) |
Сульфит аммония |
699 (362) |
273 (149) |
74 (50) |
– |
– |
– |
Сульфат аммония |
570 (298) |
208 (117) |
48 (201) |
– |
– |
– |
Изучена денитрация серной кислоты с массовой долей серной кислоты 70 %, содержащей 0,03 % N2O3, с добавками вышеприведенных восстановителей с одновременной продувкой кислоты воздухом. Нормы восстановителей принимали по стехиометрии из расчета восстановления N2O3 до NO. Наиболее высокой денитрирующей активностью среди изученных добавок обладает гидроксиламин. Так, при 373 К и времени продувки 10 минут достигнута степень денитрации более 99 % (остаточное содержание N2O3 менее 0,0003 %). Продувка воздухом без денитрирующих добавок при аналогичных условиях и времени 2 часа и температуре 443 К позволяет удалять не более 55 % N2O3 (рис. 1). Несколько меньшей активностью обладает карбамид и глюкоза (рис. 2 и 3).
Рис. 1. Ход изменения степени отдувки оксида азота (III) (, %) воздухом от температуры (t) при продолжительности: 1 – 20; 2 – 40; 3 – 60; 4 – 80; 5 – 100; 6 – 120 минут
Рис. 2. Зависимость степени денитрации по оксиду азота (III) (, %) и остаточной концентрации (, % ) от времени при введении стехиометрической нормы восстановителя: 1 – щавелевая кислота; 2 – сульфат аммония; 3 – сульфит аммония; 4 – глюкоза; 5 – карбамид; 6 – муравьиная кислота
Рис. 3. Влияние температуры (t) на степень денитрации (, %) и остаточную концентрацию () при 40 минутах с восстановителями: 1 – щавелевая кислота; 2 – сульфат аммония; 3 – сульфит аммония; 4 – глюкоза; 5 – карбамид; 6 – муравьиная кислота
Воздух, подаваемый на продувку кислоты, способствует как ускорению процесса денитрации, удаляя продукты реакции, так и замедляет процесс вследствие концентрирования серной кислоты. Несколько меньшей активностью обладают карбамид и глюкоза. Обработка кислоты этими восстановителями при 403 К и продолжительности продувки воздухом более 60 мин не позволила достичь степени денитрации выше 65 %. Влияние температуры на степень удаления оксида азота (III) карбамидом незначительно. Так, повышение температуры с 353 до 443 К при сорокаминутной продувке воздухом привело к возрастанию степени денитрации меньше, чем на 6 % (с 66,4 до 72,0 %). При этих же условиях при очистке глюкозой степень денитрации возрастает с 36 % до 70 %.
Остальные восстановители (сульфат и сульфит аммония, щавелевая кислота) денитрируют серную кислоту при 403 К и времени обработки 80 мин менее, чем на 40 %. Повышение температуры на 40 градусов только в случае использования сульфата аммония привело к увеличению степени денитрации до 63,7 % (остаточное содержание 0,011 % N2O3).
Одним из основных факторов, влияющих на степень очистки кислоты, является количество введенного восстановителя (рис. 4). Двукратная стехиометрическая норма CO(NH2)2 при 423 К и времени продувки 40 мин позволила практически полностью удалить оксид азота (III) из кислоты. Введение двойной нормы глюкозы при 443 К привело к достижению степени денитрации (при продувке кислоты в течение 40 мин) 97,4 % (остаточное содержание N2O3 – 0,0008 %).
Рис. 4. Влияние расхода восстановителя (n) на степень денитрации оксида азота (III) (, %) при времени 40 минут: 1 – сульфат аммония, 443 К; 2 – муравьиная кислота, 443 К; 3 – глюкоза, 443 К; 4 – карбамид, 423 К
Рис. 5. Влияние температуры (t) на упаривание серной кислоты (, %) и степень денитрации (, %) при очистке стехиометрической нормой сульфата аммония и времени 2ч при свободном сечении тарелки: 1 – 5 %; 2 – 10 %
Использование для продувки нитрозной серной кислоты холодного воздуха (293 К) при температуре кислоты 403 К привело к повышению степени денитрации. Например, при продувке горячим воздухом (403 К) в течение 20 мин и восстановлении N2O3 стехиометрической нормой сульфата аммония степень денитрации равна 28,1 %, тогда как при продувке холодным воздухом – 68,0 %. При введении стехиометрической нормы карбамида в кислоту при 403 К и продувке кислоты холодным воздухом в течение 20 мин степень денитрации составила 79,4 % против 63,8 %, достигаемых при продувке горячим воздухом. Следовательно, преобладающее влияние на денитрацию нитрозной серной кислоты оказывает концентрирование серной кислоты, что также подтвердили опыты по денитрации серной кислоты сульфатом аммония на колонках с разным свободным сечением (рис. 5). Степень денитрации в колонке, свободное сечение которой равно 10 %, на 5-18 % выше, чем на колонке со свободным сечением тарелки 5 %, где серная кислота закрепляется более интенсивно.
Таким образом, снижение содержания оксида азота (III) в серной кислоте менее 0,0008 % может быть получено при использовании стехиометрической нормы сульфата гидроксиламина, проведении процесса при 373 К и продолжительности продувки воздухом 10 мин, либо введением двойной нормы карбамида и денитрации при 423 К и 20 мин, либо глюкозы при 443 К и 60 мин. Глубокую денитрацию кислоты, содержащей 0,03 % N2O3, восстановителями с одновременной продувкой воздухом целесообразно проводить в условиях, исключающих значительное концентрирование серной кислоты. Продувку кислоты можно осуществлять воздухом без предварительного подогрева.
При разработке технологической схемы с использованием денитрирующих агентов, дефиксирующих связанный азот, восстановители этой группы вводят в коллектор денитрированной кислоты, либо в днище колонны денитрации. При этом выделяющиеся газы не требуют аспирации, поскольку в них преимущественно содержится элементный азот.
Таким образом, выполненные исследования позволили оценить возможности денитрирующих агентов и сформулировать основные теоретические положения, необходимые для дальнейших исследований процессов глубокой денитрации ОСК и разработки технологических процессов с учетом экологических требований.
Выводы
1. Выполнен термодинамический анализ взаимодействия оксида азота (III) (азотистой кислоты) с гидроксиламином, муравьиной и щавелевой кислотами, глюкозой, карбамидом, сульфитом и сульфатом аммония.
2. Проведено экспериментальное исследование процесса денитрации серной кислоты с массовой долей исходной серной кислоты 70 %, содержащей 0,03 % N2O3.
3. Полученные данные будут использованы для расчета процесса денитрации и оборудования при разработке технологической схемы денитрации отработанной серной кислоты.
Библиографическая ссылка
Ким П.П., Пастухова Г.В., Чубенко М.Н., Перетрутов А.А., Комаров В.А. ДЕНИТРАЦИЯ ОТРАБОТАННОЙ СЕРНОЙ КИСЛОТЫ, СОДЕРЖАЩЕЙ ОКСИДЫ АЗОТА (III), ДЕНИТРИРУЮЩИМИ АГЕНТАМИ, ДЕФИКСИРУЮЩИМИ СВЯЗАННЫЙ АЗОТ // Международный журнал прикладных и фундаментальных исследований. – 2017. – № 6-1. – С. 42-46;URL: https://applied-research.ru/ru/article/view?id=11618 (дата обращения: 04.12.2024).